論文の概要: Towards Generalizable Medical Image Segmentation with Pixel-wise
Uncertainty Estimation
- arxiv url: http://arxiv.org/abs/2305.07883v2
- Date: Mon, 19 Jun 2023 05:39:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 02:22:02.946522
- Title: Towards Generalizable Medical Image Segmentation with Pixel-wise
Uncertainty Estimation
- Title(参考訳): 画素不確かさ推定による医用画像分割の一般化に向けて
- Authors: Shuai Wang, Zipei Yan, Daoan Zhang, Zhongsen Li, Sirui Wu, Wenxuan
Chen, Rui Li
- Abstract要約: ディープニューラルネットワーク(DNN)は、独立および同一分散(IID)仮説の下で、視覚認識において有望な性能を達成する。
IID仮説は多くの現実世界、特に医用画像解析において普遍的に保証されていない。
そこで本稿では,不確実性推定を利用してDNNのハード・ツー・クラス化画素をハイライトするフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.415458419290347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) achieve promising performance in visual
recognition under the independent and identically distributed (IID) hypothesis.
In contrast, the IID hypothesis is not universally guaranteed in numerous
real-world applications, especially in medical image analysis. Medical image
segmentation is typically formulated as a pixel-wise classification task in
which each pixel is classified into a category. However, this formulation
ignores the hard-to-classified pixels, e.g., some pixels near the boundary
area, as they usually confuse DNNs. In this paper, we first explore that
hard-to-classified pixels are associated with high uncertainty. Based on this,
we propose a novel framework that utilizes uncertainty estimation to highlight
hard-to-classified pixels for DNNs, thereby improving its generalization. We
evaluate our method on two popular benchmarks: prostate and fundus datasets.
The results of the experiment demonstrate that our method outperforms
state-of-the-art methods.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、独立および同一分散(IID)仮説の下で視覚認識において有望な性能を達成する。
対照的に、IDD仮説は多くの現実世界、特に医用画像解析において普遍的に保証されていない。
医用画像分割は通常、各ピクセルをカテゴリに分類する画素単位の分類タスクとして定式化される。
しかし、この定式化はdnnを混乱させるため、例えば境界付近の画素など、分類が難しい画素を無視している。
本稿では,まず,分類の難しい画素が不確実性が高いことを明らかにする。
そこで本研究では,dnnの分類が難しい画素を強調するために不確実性推定を用いた新しい枠組みを提案する。
提案手法はprostateとfundusの2つのベンチマークで評価した。
実験の結果,本手法は最先端手法よりも優れていた。
関連論文リスト
- OOD-SEG: Out-Of-Distribution detection for image SEGmentation with sparse multi-class positive-only annotations [4.9547168429120205]
医療・外科画像におけるディープニューラルネットワークはいくつかの課題に直面しており、そのうちの2つはこの問題に対処することを目指している。
まず、医用画像のための完全なピクセルレベルのセグメンテーションラベルを取得するのに時間がかかり、ドメインの専門知識を必要とする。
第二に、典型的なセグメンテーションパイプラインは、配布外ピクセルを検出できず、デプロイ中に急激なアウトプットが発生する傾向がある。
論文 参考訳(メタデータ) (2024-11-14T16:06:30Z) - Image-level Regression for Uncertainty-aware Retinal Image Segmentation [3.7141182051230914]
我々は,新たな不確実性認識変換(SAUNA)を導入する。
以上の結果から,SAUNA変換の統合とセグメント化損失は,異なるセグメンテーションモデルにおいて大きな性能向上をもたらすことが示唆された。
論文 参考訳(メタデータ) (2024-05-27T04:17:10Z) - NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic
Segmentation [87.50830107535533]
半教師付きセマンティックセグメンテーションでは、トレーニング時にピクセルワイズラベルをラベル付けされていない画像に割り当てる。
モデルによるクラスワイズ確率分布から各画素の擬似ラベルを予測し,半教師付きセマンティックセマンティックセマンティクスへのアプローチ
本研究では,NPを半教師付きセマンティックセグメンテーションに適応させることにより一歩前進し,NP-SemiSegと呼ばれる新しいモデルを実現する。
論文 参考訳(メタデータ) (2023-08-05T12:42:15Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation [6.197149831796131]
本研究では,不確実性予測のためのCRISPをContRastive Imageとして提案する。
CRISPはその中核として、有効なセグメンテーションの分布を符号化するジョイント潜在空間を学習するためのコントラスト的手法を実装している。
この共同潜伏空間を用いて予測を数千の潜伏ベクトルと比較し、解剖学的に一貫した不確実性写像を提供する。
論文 参考訳(メタデータ) (2022-06-15T16:56:58Z) - SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation [52.62441404064957]
ドメイン適応セマンティックセグメンテーションは、ラベル付きソースドメインでトレーニングされたモデルを利用することで、ラベル付きターゲットドメイン上で満足のいく密度の予測を試みる。
多くの手法は、ノイズの多い擬似ラベルを緩和する傾向があるが、類似のセマンティックな概念を持つクロスドメインピクセル間の固有の接続を無視する。
本稿では,個々の画素のセマンティックな概念を強調する一段階適応フレームワークSePiCoを提案する。
論文 参考訳(メタデータ) (2022-04-19T11:16:29Z) - KRADA: Known-region-aware Domain Alignment for Open World Semantic
Segmentation [64.03817806316903]
セマンティックセグメンテーションでは、画像中のすべてのピクセルにカテゴリラベルを割り当てるために、ピクセルレベルの分類器を訓練することを目指している。
オープンな世界では、ラベル付けされていないテスト画像はおそらく未知のカテゴリを含み、ラベル付けされた画像とは異なる分布を持つ。
本稿では,未知のクラスを識別し,ラベル付きおよびラベルなしのオープンワールド画像中の既知のクラスの分布を整列する,エンドツーエンドの学習フレームワークKRADAを提案する。
論文 参考訳(メタデータ) (2021-06-11T08:43:59Z) - ITSELF: Iterative Saliency Estimation fLexible Framework [68.8204255655161]
機密度オブジェクト検出は、画像で最も顕著なオブジェクトを推定する。
我々は,ユーザ定義の仮定をモデルに追加できる,スーパーピクセルベースのITELF(ITSELF)を提案する。
ITSELFを5つのメトリクスと6つのデータセットで2つの最先端の精度推定器と比較する。
論文 参考訳(メタデータ) (2020-06-30T16:51:31Z) - Stochastic Segmentation Networks: Modelling Spatially Correlated
Aleatoric Uncertainty [32.33791302617957]
画像セグメンテーションネットワークアーキテクチャを用いてアレータティック不確実性をモデル化するための効率的な確率的手法であるセグメンテーションネットワーク(SSN)を導入する。
SSNは単一の画像に対して複数の空間的コヒーレント仮説を生成することができる。
2次元CTでは肺結節,3次元MRIでは脳腫瘍を含む実世界の医療データのセグメンテーションについて検討した。
論文 参考訳(メタデータ) (2020-06-10T18:06:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。