論文の概要: CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2206.07664v1
- Date: Wed, 15 Jun 2022 16:56:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-16 15:19:12.138052
- Title: CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation
- Title(参考訳): CRISP - 医用画像分割のための信頼性の高い不確実性推定
- Authors: Thierry Judge, Olivier Bernard, Mihaela Porumb, Agis Chartsias, Arian
Beqiri, Pierre-Marc Jodoin
- Abstract要約: 本研究では,不確実性予測のためのCRISPをContRastive Imageとして提案する。
CRISPはその中核として、有効なセグメンテーションの分布を符号化するジョイント潜在空間を学習するためのコントラスト的手法を実装している。
この共同潜伏空間を用いて予測を数千の潜伏ベクトルと比較し、解剖学的に一貫した不確実性写像を提供する。
- 参考スコア(独自算出の注目度): 6.197149831796131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate uncertainty estimation is a critical need for the medical imaging
community. A variety of methods have been proposed, all direct extensions of
classification uncertainty estimations techniques. The independent pixel-wise
uncertainty estimates, often based on the probabilistic interpretation of
neural networks, do not take into account anatomical prior knowledge and
consequently provide sub-optimal results to many segmentation tasks. For this
reason, we propose CRISP a ContRastive Image Segmentation for uncertainty
Prediction method. At its core, CRISP implements a contrastive method to learn
a joint latent space which encodes a distribution of valid segmentations and
their corresponding images. We use this joint latent space to compare
predictions to thousands of latent vectors and provide anatomically consistent
uncertainty maps. Comprehensive studies performed on four medical image
databases involving different modalities and organs underlines the superiority
of our method compared to state-of-the-art approaches.
- Abstract(参考訳): 正確な不確実性の推定は、医療画像コミュニティにとって重要なニーズである。
分類の不確実性推定手法のすべての直接的な拡張として、様々な方法が提案されている。
独立画素単位の不確実性推定は、しばしばニューラルネットワークの確率論的解釈に基づいており、解剖学的事前知識を考慮しておらず、結果として多くのセグメンテーションタスクに準最適結果を与える。
このため,不確実性予測のためのCRISPをContRastive Image Segmentationとして提案する。
中心となるのが、有効なセグメンテーションとその対応する画像の分布を符号化するジョイント潜在空間を学習するための対比的手法である。
この共同潜伏空間を用いて予測を数千の潜伏ベクトルと比較し、解剖学的に一貫した不確実性写像を提供する。
異なるモダリティと臓器を含む4つの医用画像データベースで実施した総合的研究は、最先端のアプローチと比較して、我々の方法の優越性を裏付けるものである。
関連論文リスト
- MedUHIP: Towards Human-In-the-Loop Medical Segmentation [5.520419627866446]
医用画像のセグメンテーションは、固有の不確実性によって特に複雑である。
我々はtextbfuncertainty-aware モデルと textbf Human-in-the-loop 相互作用を統合する新しいアプローチを提案する。
提案手法は,決定論的および不確実性を考慮したモデルよりも優れたセグメンテーション能力を示す。
論文 参考訳(メタデータ) (2024-08-03T01:06:02Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
本稿では,セグメンテーションニューラルネットワークにおける不確実性定量化のための新しいベイズディープラーニングフレームワークを提案する。
我々は磁気共鳴イメージングとCTによる医用画像分割データについて検討した。
複数のベンチマークデータセットに対する実験により,提案するフレームワークは,最先端セグメンテーションモデルと比較して,ノイズや敵攻撃に対してより堅牢であることが示された。
論文 参考訳(メタデータ) (2021-11-10T22:46:05Z) - Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
Image Segmentation [92.9634065964963]
我々は、不確実性推定と個別の自己学習戦略に基づいて、新しい半教師付きセグメンテーションモデル、すなわち保守的ラディカルネットワーク(CoraNet)を提案する。
現在の技術と比較すると、ColaNetは優れたパフォーマンスを示しています。
論文 参考訳(メタデータ) (2021-10-17T08:49:33Z) - Uncertainty Quantification in Medical Image Segmentation with
Multi-decoder U-Net [3.961279440272763]
医用画像のセグメンテーションの不確かさを,教師付き学習方式で複数のアノテーションを用いたセグメンテーション性能の測定により評価する。
複数のデコーダを持つU-Netアーキテクチャを提案し、画像表現を同じエンコーダで符号化し、各アノテーションを参照するセグメンテーションを複数のデコーダで推定する。
提案アーキテクチャはエンドツーエンドでトレーニングされ、予測の不確実性推定を改善することができる。
論文 参考訳(メタデータ) (2021-09-15T01:46:29Z) - Multi-structure bone segmentation in pediatric MR images with combined
regularization from shape priors and adversarial network [0.4588028371034407]
異種小児磁気共鳴(MR)画像のセグメント化に難渋する課題に対して,新たにトレーニングした正規化畳み込みエンコーダデコーダネットワークを提案する。
グローバルに一貫した予測を得るために,オートエンコーダで学習した非線形形状表現から得られる,形状先行に基づく正規化を組み込む。
提案手法は,Dice, 感度, 特異性, 最大対称表面距離, 平均対称表面距離, および相対絶対体積差の測定値について, 従来提案した手法と同等あるいは同等に動作した。
論文 参考訳(メタデータ) (2020-09-15T13:39:53Z) - Uncertainty Quantification using Variational Inference for Biomedical Image Segmentation [0.0]
我々は,脳腫瘍画像のセグメント化のための変分推論技術に基づくエンコーダデコーダアーキテクチャを用いる。
Dice similarity Coefficient (DSC) と Intersection Over Union (IOU) を指標として, 公開されているBRATSデータセットの評価を行った。
論文 参考訳(メタデータ) (2020-08-12T20:08:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。