論文の概要: Neural operator for structural simulation and bridge health monitoring
- arxiv url: http://arxiv.org/abs/2305.07889v1
- Date: Sat, 13 May 2023 10:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 18:57:58.749444
- Title: Neural operator for structural simulation and bridge health monitoring
- Title(参考訳): 構造シミュレーションとブリッジ健康モニタリングのためのニューラルオペレータ
- Authors: Chawit Kaewnuratchadasorn, Jiaji Wang, Chul-Woo Kim
- Abstract要約: 本研究では,VINO (Vehicle-bridge Interaction Neural Operator) を橋梁構造物のディジタルツインとして用いることを提案する。
VINOは構造応答場と損傷場のマッピングを学ぶ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Infusing deep learning with structural engineering has received widespread
attention for both forward problems (structural simulation) and inverse
problems (structural health monitoring). Based on Fourier Neural Operator, this
study proposes VINO (Vehicle-bridge Interaction Neural Operator) to serve as
the digital twin of bridge structures. VINO learns mappings between structural
response fields and damage fields. In this study, VBI-FE dataset was
established by running parametric finite element (FE) simulations considering a
random distribution of structural initial damage field. Subsequently, VBI-EXP
dataset was produced by conducting an experimental study under four damage
scenarios. After VINO was pre-trained by VBI-FE and fine-tuned by VBI-EXP from
the bridge at the healthy state, the model achieved the following two
improvements. First, forward VINO can predict structural responses from damage
field inputs more accurately than the FE model. Second, inverse VINO can
determine, localize, and quantify damages in all scenarios, suggesting the
practicality of data-driven approaches.
- Abstract(参考訳): 構造工学による深層学習は,前向き問題(構造シミュレーション)と逆問題(構造健康モニタリング)の両方に広く注目されている。
フーリエ・ニューラル・オペレーターに基づいて,橋梁構造のディジタル双対としてvino(vehicle-bridge interaction neural operator)を提案する。
VINOは構造応答場と損傷場のマッピングを学ぶ。
本研究では, 構造初期損傷場のランダム分布を考慮したパラメータ有限要素(FE)シミュレーションにより, VBI-FEデータセットを構築した。
その後、vbi-expデータセットは4つの損傷シナリオで実験的研究を行った。
VINOはVBI-FEによって事前訓練され、VBI-EXPによって正常状態の橋から微調整された後、以下の2つの改善が達成された。
まず、フォワードVINOは、FEモデルよりも正確に損傷場入力から構造応答を予測できる。
第二に、逆VINOはすべてのシナリオにおけるダメージを決定、ローカライズ、定量化し、データ駆動アプローチの実践性を示唆する。
関連論文リスト
- Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
リフレクションメトリデータと互換性のある全ての構造を見つけることは、標準アルゴリズムでは計算が禁止される。
この信頼性の欠如に対処するため,確率論的深層学習法を用いて,現実的な構造を数秒で識別する。
提案手法は,シミュレーションに基づく推論と新しい適応型事前推定を併用する。
論文 参考訳(メタデータ) (2024-07-26T10:29:16Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
本稿では,BEVアルゴリズムのレジリエンスを評価するためのベンチマークスイートであるRoboBEVを紹介する。
検出,マップセグメンテーション,深さ推定,占有予測といったタスクにまたがる33の最先端のBEVベースの知覚モデルを評価する。
また, 事前学習や深度自由なBEVトランスフォーメーションなどの戦略が, アウト・オブ・ディストリビューションデータに対するロバスト性を高める上で有効であることを示す。
論文 参考訳(メタデータ) (2024-05-27T17:59:39Z) - Cell Variational Information Bottleneck Network [6.164295534465283]
本稿では,最新のフィードフォワードネットワークアーキテクチャと組み合わせることができる情報ボトルネック機構を用いた畳み込みニューラルネットワークを提案する。
セル変動情報ボトルネックネットワークは、不確実性のある特徴マップを生成するVIBセルを積み重ねて構築される。
より複雑な表現学習タスクである顔認識では、ネットワーク構造も非常に競争力のある結果を得た。
論文 参考訳(メタデータ) (2024-03-22T10:06:31Z) - Machine learning for structural design models of continuous beam systems via influence zones [3.284878354988896]
この研究は、逆問題の観点から連続ビームシステムのための機械学習構造設計モデルを開発する。
本研究の目的は,任意のシステムサイズを持つ連続ビームシステムの断面積要求を予測できる非定常構造設計モデルを概念化することである。
論文 参考訳(メタデータ) (2024-03-14T14:53:18Z) - SIP: Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation [75.14793516745374]
本稿では, 構造的帰納バイアスをセック2セックモデルに効率よく注入し, 合成データの構造的変換をシミュレートする方法について述べる。
実験の結果,本手法は所望の帰納バイアスを付与し,FSTのようなタスクに対してより優れた数発学習を実現することがわかった。
論文 参考訳(メタデータ) (2023-10-01T21:19:12Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - Evaluating the Adversarial Robustness for Fourier Neural Operators [78.36413169647408]
フーリエ・ニューラル・オペレータ(FNO)は、ゼロショット超解像で乱流をシミュレートした最初の人物である。
我々はノルム有界データ入力摂動に基づくFNOの逆例を生成する。
以上の結果から,モデルの強靭性は摂動レベルの増加とともに急速に低下することが明らかとなった。
論文 参考訳(メタデータ) (2022-04-08T19:19:42Z) - A Novel Approach for Deterioration and Damage Identification in Building
Structures Based on Stockwell-Transform and Deep Convolutional Neural Network [11.596550916365574]
建物モデルに劣化損傷識別法(DIP)を適用した。
DIPは、低コストな環境振動を利用してストックウェル変換(ST)を用いて加速度応答を分析し、分光図を生成する。
我々の知る限りでは、STとCNNの組み合わせによる建物モデルにおける損傷と劣化の両方を高精度に評価するのは今回が初めてである。
論文 参考訳(メタデータ) (2021-11-11T11:31:37Z) - Online structural health monitoring by model order reduction and deep
learning algorithms [0.17499351967216337]
オンラインダメージローカリゼーションに向けたシミュレーションに基づく分類戦略を提案する。
提案手法は2次元ポータルフレームと3次元ポータルフレーム鉄道橋に関する2つのケーススタディによって検証されている。
論文 参考訳(メタデータ) (2021-03-26T08:40:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。