PESTS: Persian_English Cross Lingual Corpus for Semantic Textual Similarity
- URL: http://arxiv.org/abs/2305.07893v3
- Date: Thu, 5 Sep 2024 17:45:57 GMT
- Title: PESTS: Persian_English Cross Lingual Corpus for Semantic Textual Similarity
- Authors: Mohammad Abdous, Poorya Piroozfar, Behrouz Minaei Bidgoli,
- Abstract summary: Cross lingual semantic similarity models use a machine translation due to the unavailability of cross lingual semantic similarity dataset.
For Persian, which is one of the low resource languages, the need for a model that can understand the context of two languages is felt more than ever.
In this article, the corpus of semantic similarity between sentences in Persian and English languages has been produced for the first time by using linguistic experts.
- Score: 5.439505575097552
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One of the components of natural language processing that has received a lot of investigation recently is semantic textual similarity. In computational linguistics and natural language processing, assessing the semantic similarity of words, phrases, paragraphs, and texts is crucial. Calculating the degree of semantic resemblance between two textual pieces, paragraphs, or phrases provided in both monolingual and cross-lingual versions is known as semantic similarity. Cross lingual semantic similarity requires corpora in which there are sentence pairs in both the source and target languages with a degree of semantic similarity between them. Many existing cross lingual semantic similarity models use a machine translation due to the unavailability of cross lingual semantic similarity dataset, which the propagation of the machine translation error reduces the accuracy of the model. On the other hand, when we want to use semantic similarity features for machine translation the same machine translations should not be used for semantic similarity. For Persian, which is one of the low resource languages, no effort has been made in this regard and the need for a model that can understand the context of two languages is felt more than ever. In this article, the corpus of semantic textual similarity between sentences in Persian and English languages has been produced for the first time by using linguistic experts. We named this dataset PESTS (Persian English Semantic Textual Similarity). This corpus contains 5375 sentence pairs. Also, different models based on transformers have been fine-tuned using this dataset. The results show that using the PESTS dataset, the Pearson correlation of the XLM ROBERTa model increases from 85.87% to 95.62%.
Related papers
- Tomato, Tomahto, Tomate: Measuring the Role of Shared Semantics among Subwords in Multilingual Language Models [88.07940818022468]
We take an initial step on measuring the role of shared semantics among subwords in the encoder-only multilingual language models (mLMs)
We form "semantic tokens" by merging the semantically similar subwords and their embeddings.
inspections on the grouped subwords show that they exhibit a wide range of semantic similarities.
arXiv Detail & Related papers (2024-11-07T08:38:32Z) - FarSSiBERT: A Novel Transformer-based Model for Semantic Similarity Measurement of Persian Social Networks Informal Texts [0.0]
This paper introduces a new transformer-based model to measure semantic similarity between Persian informal short texts from social networks.
It is pre-trained on approximately 104 million Persian informal short texts from social networks, making it one of a kind in the Persian language.
It has been demonstrated that our proposed model outperforms ParsBERT, laBSE, and multilingual BERT in the Pearson and Spearman's coefficient criteria.
arXiv Detail & Related papers (2024-07-27T05:04:49Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
We present the semantic notion of agentivity as a case study for probing such interactions.
This suggests LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery.
arXiv Detail & Related papers (2023-05-29T16:24:01Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Quantifying Synthesis and Fusion and their Impact on Machine Translation [79.61874492642691]
In Natural Language Processing (NLP) typically labels a whole language with a strict type of morphology, e.g. fusional or agglutinative.
In this work, we propose to reduce the rigidity of such claims, by quantifying morphological typology at the word and segment level.
For computing literature, we test unsupervised and supervised morphological segmentation methods for English, German and Turkish, whereas for fusion, we propose a semi-automatic method using Spanish as a case study.
Then, we analyse the relationship between machine translation quality and the degree of synthesis and fusion at word (nouns and verbs for English-Turkish,
arXiv Detail & Related papers (2022-05-06T17:04:58Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
In cross-lingual language models, representations for many different languages live in the same space.
We compute a task-based measure of cross-lingual alignment in the form of bitext retrieval performance.
We examine a range of linguistic, quasi-linguistic, and training-related features as potential predictors of these alignment metrics.
arXiv Detail & Related papers (2021-09-13T21:05:37Z) - Aligning Cross-lingual Sentence Representations with Dual Momentum
Contrast [12.691501386854094]
We propose to align sentence representations from different languages into a unified embedding space, where semantic similarities can be computed with a simple dot product.
As the experimental results show, the sentence representations produced by our model achieve the new state-of-the-art on several tasks.
arXiv Detail & Related papers (2021-09-01T08:48:34Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
We propose a new approach for learning contextualised cross-lingual word embeddings based on a small parallel corpus.
Our method obtains word embeddings via an LSTM encoder-decoder model that simultaneously translates and reconstructs an input sentence.
arXiv Detail & Related papers (2020-10-27T22:24:01Z) - A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with
Bilingual Semantic Similarity Rewards [40.17497211507507]
Cross-lingual text summarization is a practically important but under-explored task.
We propose an end-to-end cross-lingual text summarization model.
arXiv Detail & Related papers (2020-06-27T21:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.