論文の概要: Network-GIANT: Fully distributed Newton-type optimization via harmonic
Hessian consensus
- arxiv url: http://arxiv.org/abs/2305.07898v2
- Date: Wed, 19 Jul 2023 09:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-20 17:14:31.026575
- Title: Network-GIANT: Fully distributed Newton-type optimization via harmonic
Hessian consensus
- Title(参考訳): network-giant: harmonic hessian consensusによる完全分散ニュートン型最適化
- Authors: Alessio Maritan, Ganesh Sharma, Luca Schenato, Subhrakanti Dey
- Abstract要約: 本稿では,GIANTに基づくNewton型完全分散最適化アルゴリズムであるNetwork-GIANTを紹介する。
このアルゴリズムは,強い凸関数と滑らかな損失関数を仮定して,ネットワーク上の厳密解に対する半言語的および指数的収束を保証する。
我々は,Network-DANEやNewton-Raphson Consensusのような最先端の分散学習アルゴリズムに比べて,Network-GIANTの収束性能が優れていることを示す実証的な証拠を提供する。
- 参考スコア(独自算出の注目度): 2.8617826964327113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of distributed multi-agent learning, where
the global aim is to minimize a sum of local objective (empirical loss)
functions through local optimization and information exchange between
neighbouring nodes. We introduce a Newton-type fully distributed optimization
algorithm, Network-GIANT, which is based on GIANT, a Federated learning
algorithm that relies on a centralized parameter server. The Network-GIANT
algorithm is designed via a combination of gradient-tracking and a Newton-type
iterative algorithm at each node with consensus based averaging of local
gradient and Newton updates. We prove that our algorithm guarantees semi-global
and exponential convergence to the exact solution over the network assuming
strongly convex and smooth loss functions. We provide empirical evidence of the
superior convergence performance of Network-GIANT over other state-of-art
distributed learning algorithms such as Network-DANE and Newton-Raphson
Consensus.
- Abstract(参考訳): 本稿では,局所最適化と近隣ノード間の情報交換による局所的目的(経験的損失)関数の和を最小化する分散マルチエージェント学習の課題について考察する。
本稿では,集中型パラメータサーバに依存する連合学習アルゴリズムである giant に基づく,ニュートン型完全分散最適化アルゴリズム network-giant を提案する。
ネットワークジャイアントアルゴリズムは、各ノードにおける勾配追跡とニュートン型反復アルゴリズムの組み合わせによって設計され、局所勾配とニュートン更新のコンセンサスに基づく平均化を行う。
提案アルゴリズムは,強い凸関数と滑らかな損失関数を仮定して,ネットワーク上の厳密解に対する半グローバルおよび指数収束を保証する。
本稿では,ネットワークダインやニュートン・ラフソンコンセンサスなどの最先端分散学習アルゴリズムよりも,ネットワークジャイアントの収束性能が優れていることを示す実証的証拠を提供する。
関連論文リスト
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Distributed stochastic proximal algorithm with random reshuffling for
non-smooth finite-sum optimization [28.862321453597918]
非滑らかな有限サム最小化は機械学習の基本的な問題である。
本稿では,確率的リシャフリングを用いた分散近位勾配アルゴリズムを開発し,その問題の解法を提案する。
論文 参考訳(メタデータ) (2021-11-06T07:29:55Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
分散強化学習のための新しいゼロ階最適化アルゴリズムを提案する。
これにより、各エージェントはコンセンサスプロトコルを使わずに、コスト評価を独立してローカル勾配を推定できる。
論文 参考訳(メタデータ) (2021-07-26T18:11:07Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Decentralized Statistical Inference with Unrolled Graph Neural Networks [26.025935320024665]
分散最適化アルゴリズムをグラフニューラルネットワーク(GNN)にアンロールする学習ベースフレームワークを提案する。
エンドツーエンドトレーニングによるリカバリエラーを最小限にすることで、この学習ベースのフレームワークは、モデルのミスマッチ問題を解決する。
コンバージェンス解析により,学習したモデルパラメータがコンバージェンスを加速し,リカバリエラーを広範囲に低減できることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-04T07:52:34Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
センサローカライゼーションの現実問題において,ネットワークトポロジと異なるアルゴリズムの収束率の関係について検討する。
また、ADMMと持ち上げマルコフ連鎖の間の興味深い関係を示すとともに、その収束を明示的に特徴づける。
論文 参考訳(メタデータ) (2020-09-05T21:44:39Z) - Multi-Level Local SGD for Heterogeneous Hierarchical Networks [11.699472346137739]
異種ネットワークにおける学習・非目的フレームワークのための分散勾配法であるマルチレベルローカルSGDを提案する。
まず,マルチレベル局所SGDアルゴリズムを記述する統一数学的手法を提案する。
次に,アルゴリズムの理論的解析を行う。
論文 参考訳(メタデータ) (2020-07-27T19:14:23Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。