Ultracompact single-photon sources of linearly polarized vortex beams
- URL: http://arxiv.org/abs/2305.08222v1
- Date: Sun, 14 May 2023 18:48:47 GMT
- Title: Ultracompact single-photon sources of linearly polarized vortex beams
- Authors: Xujing Liu, Yinhui Kan, Shailesh Kumar, Liudmilla F. Kulikova, Valery
A. Davydov, Viatcheslav N. Agafonov, Changying Zhao, Sergey I. Bozhevolnyi
- Abstract summary: Single-photon sources of collimated beams with polarizationencoded states are crucial for integrated quantum technologies.
We present ultracompact single-photon sources of linearly polarized vortex beams based on chip-integrated quantum emitter-coupled metasurfaces.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultracompact chip-integrated single-photon sources of collimated beams with
polarizationencoded states are crucial for integrated quantum technologies.
However, most of currently available single-photon sources rely on external
bulky optical components to shape the polarization and phase front of emitted
photon beams. Efficient integration of quantum emitters with beam shaping and
polarization encoding functionalities remains so far elusive. Here, we present
ultracompact single-photon sources of linearly polarized vortex beams based on
chip-integrated quantum emitter-coupled metasurfaces, which are meticulously
designed by fully exploiting the potential of nanobrick arrayed metasurfaces.
We first demonstrate on-chip single-photon generation of high-purity linearly
polarized vortex beams with prescribed topological charges of -1, 0, and +1. We
further realize multiplexing of single-photon emission channels with orthogonal
linear polarizations carrying different topological charges and demonstrate
their entanglement. Our work illustrates the potential and feasibility of
ultracompact quantum emitter-coupled metasurfaces as a new quantum optics
platform for realizing chip-integrated high-dimensional single-photon sources.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Single-photon circularly polarized single-mode vortex beams [0.0]
On-chip generation of single photons encoded with single-mode SAM-OAM states has been a major challenge.
We demonstrate on-chip room-temperature generation of well-collimated (divergence 7.5 degrees) circularly polarized single-mode vortex beams.
The developed approach can straightforwardly be extended to produce multiple, differently polarized, single-mode single-photon radiation channels.
arXiv Detail & Related papers (2023-05-14T18:50:04Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Ultra-bright single photon source based on an atomically thin material [6.062778743244592]
Solid-state single photon sources are central building blocks in quantum communication networks and on-chip quantum information processing.
Here, we implement a single photon source based on an atomically thin sheet of WSe2 coupled to a spectrally tunable optical cavity.
It is characterized by a high single photon purity with a $g(2)(0)$ value as low as $4.7 pm 0.7 %$ and a record-high first lens brightness of linearly polarized photons as large as $65 pm 4 %$.
arXiv Detail & Related papers (2023-02-13T13:22:47Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Room-temperature on-chip orbital angular momentum single-photon sources [2.6929576641257778]
On-chip sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing.
We demonstrate a room-temperature on-chip integrated OAM source that emits well-collimated single photons.
Our OAM single-photon sources bridge the gap between conventional OAM manipulation and nonclassical light sources.
arXiv Detail & Related papers (2021-04-02T15:57:34Z) - Buried spatially-regular array of spectrally ultra-uniform single
quantum dots for on-chip scalable quantum optical circuits [3.608886052423018]
In this paper we report the first realization of such SPS arrays based upon a class of single quantum dots (SQDs) with single photon emission purity > 99.5% and uniformity 2nm.
The buried array of SQDs naturally lend themselves to the fabrication of quantum optical circuits employing either the well-developed photonic 2D crystal platform or the use of Mie-like collective resonance of all-dielectric building block based metastructures.
arXiv Detail & Related papers (2020-06-01T08:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.