Buried spatially-regular array of spectrally ultra-uniform single
quantum dots for on-chip scalable quantum optical circuits
- URL: http://arxiv.org/abs/2006.00796v1
- Date: Mon, 1 Jun 2020 08:43:35 GMT
- Title: Buried spatially-regular array of spectrally ultra-uniform single
quantum dots for on-chip scalable quantum optical circuits
- Authors: Jiefei Zhang, Swarnabha Chattaraj, Qi Huang, Lucas Jordao, Siyuan Lu,
and Anupam Madhukar
- Abstract summary: In this paper we report the first realization of such SPS arrays based upon a class of single quantum dots (SQDs) with single photon emission purity > 99.5% and uniformity 2nm.
The buried array of SQDs naturally lend themselves to the fabrication of quantum optical circuits employing either the well-developed photonic 2D crystal platform or the use of Mie-like collective resonance of all-dielectric building block based metastructures.
- Score: 3.608886052423018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A long standing obstacle to realizing highly sought on-chip monolithic solid
state quantum optical circuits has been the lack of a starting platform
comprising buried (protected) scalable spatially ordered and spectrally uniform
arrays of on-demand single photon sources (SPSs). In this paper we report the
first realization of such SPS arrays based upon a class of single quantum dots
(SQDs) with single photon emission purity > 99.5% and uniformity < 2nm. Such
SQD synthesis approach offers rich flexibility in material combinations and
thus can cover the emission wavelength regime from long- to mid- to
near-infrared to the visible and ultraviolet. The buried array of SQDs
naturally lend themselves to the fabrication of quantum optical circuits
employing either the well-developed photonic 2D crystal platform or the use of
Mie-like collective resonance of all-dielectric building block based
metastructures designed for directed emission and manipulation of the emitted
photons in the horizontal planar architecture inherent to on-chip optical
circuits. Finite element method-based simulations of the Mie-resonance based
manipulation of the emitted light are presented showing achievement of
simultaneous multifunctional manipulation of photons with large spectral
bandwidth of ~ 20nm that eases spectral and mode matching. Our combined
experimental and simulation findings presented here open the pathway for
fabrication and study of on-chip quantum optical circuits.
Related papers
- Quantum Imaging Using Spatially Entangled Photon Pairs from a Nonlinear Metasurface [0.4188114563181615]
metasurfaces with subwavelength thickness were recently established as versatile platforms for the enhanced and tailorable generation of entangled photon pairs.
Here, we demonstrate the unique benefits and practical potential of nonlinear metasurfaces for quantum imaging at infrared wavelengths.
We reconstruct the images of 2D objects using just a 1D detector array in the idler path and a bucket detector in the signal path, by recording the dependencies of photon coincidences on the pump wavelength.
arXiv Detail & Related papers (2024-08-06T02:25:34Z) - Super-resolved snapshot hyperspectral imaging of solid-state quantum
emitters for high-throughput integrated quantum technologies [2.369149909203103]
We introduce the concept of hyperspectral imaging in quantum optics, for the first time, to address such a long-standing issue.
With the extracted quantum dot positions and emission wavelengths, surface-emitting quantum light sources and in-plane photonic circuits can be deterministically fabricated.
Our work is expected to change the landscape of integrated quantum photonic technology.
arXiv Detail & Related papers (2023-11-05T11:51:22Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - All-optical Tuning of Indistinguishable Single-Photons Generated in
Three-level Quantum Systems [0.2642406403099596]
We introduce a coherent driving scheme of a three-level ladder system utilizing Autler-Townes and ac Stark effects by resonant excitation with two laser fields.
We propose theoretically and demonstrate experimentally the feasibility of this approach towards all-optical spectral tuning of single-photon sources.
arXiv Detail & Related papers (2022-01-02T22:58:05Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - On chip scalable highly pure and indistinguishable single photon sources
in ordered arrays: Path to Quantum Optical Circuits [3.824032758489195]
We report on a novel platform of single photon sources based upon a novel class of epitaxial quantum dots.
Under resonant excitation, the SPSs show single photon purity >99%, high two-photon Hong-Ou-Mandel interference visibilities, and spectral nonuniformity 3nm.
Our platform of SPSs paves the path to creating on-chip scalable quantum photonic systems.
arXiv Detail & Related papers (2021-08-03T12:00:47Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Purcell enhanced and indistinguishable single-photon generation from
quantum dots coupled to on-chip integrated ring resonators [0.2642406403099596]
Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications.
We develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides.
We demonstrate an on-demand single-photon generation with strongly suppressed multi-photon emission probability as low as 1% and two-photon interference with visibility up to 95%.
arXiv Detail & Related papers (2020-07-25T12:43:53Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.