HighGuard: Cross-Chain Business Logic Monitoring of Smart Contracts
- URL: http://arxiv.org/abs/2305.08254v2
- Date: Fri, 14 Feb 2025 20:16:35 GMT
- Title: HighGuard: Cross-Chain Business Logic Monitoring of Smart Contracts
- Authors: Mojtaba Eshghie, Wolfgang Ahrendt, Cyrille Artho, Thomas Troels Hildebrandt, Gerardo Schneider,
- Abstract summary: HighGuard is a tool to detect transactions that violate business logic specifications of smart contracts.
It is capable of operating in a cross-chain environment for detecting business logic flaws across different blockchain platforms.
Our evaluation, involving 54 exploits, confirms HighGuard's effectiveness in detecting business logic vulnerabilities.
- Score: 2.2375489356775464
- License:
- Abstract: Logical flaws in smart contracts are often exploited, leading to significant financial losses. Our tool, HighGuard, detects transactions that violate business logic specifications of smart contracts. HighGuard employs dynamic condition response (DCR) graph models as formal specifications to verify contract execution against these models. It is capable of operating in a cross-chain environment for detecting business logic flaws across different blockchain platforms. We demonstrate HighGuard's effectiveness in identifying deviations from specified behaviors in smart contracts without requiring code instrumentation or incurring additional gas costs. By using precise specifications in the monitor, HighGuard achieves detection without false positives. Our evaluation, involving 54 exploits, confirms HighGuard's effectiveness in detecting business logic vulnerabilities. Our open-source implementation of HighGuard and a screencast of its usage are available at: https://github.com/mojtaba-eshghie/HighGuard https://www.youtube.com/watch?v=sZYVV-slDaY
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - ML Study of MaliciousTransactions in Ethereum [0.0]
This paper presents two successful approaches for detecting malicious contracts.
One uses opcode and relies on GPT2 and the other uses the Solidity source and a LORA fine-tuned CodeLlama.
arXiv Detail & Related papers (2024-08-16T13:50:04Z) - Soley: Identification and Automated Detection of Logic Vulnerabilities in Ethereum Smart Contracts Using Large Language Models [1.081463830315253]
We empirically investigate logic vulnerabilities in real-world smart contracts extracted from code changes on GitHub.
We introduce Soley, an automated method for detecting logic vulnerabilities in smart contracts.
We examine mitigation strategies employed by smart contract developers to address these vulnerabilities in real-world scenarios.
arXiv Detail & Related papers (2024-06-24T00:15:18Z) - StateGuard: Detecting State Derailment Defects in Decentralized Exchange Smart Contract [4.891180928768215]
We conduct the first systematic study on state derailment defects of DEXs.
These defects could lead to incorrect, incomplete, or unauthorized changes to the system state during contract execution.
We propose StateGuard, a deep learning-based framework to detect state derailment defects in DEX smart contracts.
arXiv Detail & Related papers (2024-05-15T08:40:29Z) - Solvent: liquidity verification of smart contracts [2.680854115314008]
A current limitation of smart contract verification tools is that they are not really effective in expressing and verifying liquidity properties regarding the exchange of crypto-assets.
We propose solvent, a tool aimed at verifying these kinds of properties, which are beyond the reach of existing verification tools for Solidity.
arXiv Detail & Related papers (2024-04-27T10:54:50Z) - LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts [15.071155232677643]
Decentralized Finance (DeFi) incidents have resulted in financial damages exceeding 3 billion US dollars.
Current detection tools face significant challenges in identifying attack activities effectively.
We propose a new direction for detecting DeFi attacks that focuses on identifying adversarial contracts.
arXiv Detail & Related papers (2024-01-14T11:39:33Z) - Performance-lossless Black-box Model Watermarking [69.22653003059031]
We propose a branch backdoor-based model watermarking protocol to protect model intellectual property.
In addition, we analyze the potential threats to the protocol and provide a secure and feasible watermarking instance for language models.
arXiv Detail & Related papers (2023-12-11T16:14:04Z) - TextGuard: Provable Defense against Backdoor Attacks on Text
Classification [83.94014844485291]
We propose TextGuard, the first provable defense against backdoor attacks on text classification.
In particular, TextGuard divides the (backdoored) training data into sub-training sets, achieved by splitting each training sentence into sub-sentences.
In our evaluation, we demonstrate the effectiveness of TextGuard on three benchmark text classification tasks.
arXiv Detail & Related papers (2023-11-19T04:42:16Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Robustness of Unsupervised Representation Learning without Labels [92.90480374344777]
We propose a family of unsupervised robustness measures, which are model- and task-agnostic and label-free.
We validate our results against a linear probe and show that, for MOCOv2, adversarial training results in 3 times higher certified accuracy.
arXiv Detail & Related papers (2022-10-08T18:03:28Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.