ML Study of MaliciousTransactions in Ethereum
- URL: http://arxiv.org/abs/2408.08749v1
- Date: Fri, 16 Aug 2024 13:50:04 GMT
- Title: ML Study of MaliciousTransactions in Ethereum
- Authors: Natan Katz,
- Abstract summary: This paper presents two successful approaches for detecting malicious contracts.
One uses opcode and relies on GPT2 and the other uses the Solidity source and a LORA fine-tuned CodeLlama.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart contracts are a major tool in Ethereum transactions. Therefore hackers can exploit them by adding code vulnerabilities to their sources and using these vulnerabilities for performing malicious transactions. This paper presents two successful approaches for detecting malicious contracts: one uses opcode and relies on GPT2 and the other uses the Solidity source and a LORA fine-tuned CodeLlama. Finally, we present an XGBOOST model that combines gas properties and Hexa-decimal signatures for detecting malicious transactions. This approach relies on early assumptions that maliciousness is manifested by the uncommon usage of the contracts' functions and the effort to pursue the transaction.
Related papers
- Instrumenting Transaction Trace Properties in Smart Contracts: Extending the EVM for Real-Time Security [3.4237310507643706]
Smart contracts are often instrumented with some safety properties to enhance their security.
These safety properties are limited and fail to block certain types of hacks such as those which exploit read-only re-entrancy.
We propose to enable smart contracts to validate transaction trace properties in real-time without affecting traditional EVM execution.
arXiv Detail & Related papers (2024-08-26T20:33:22Z) - Theorem-Carrying-Transaction: Runtime Certification to Ensure Safety for Smart Contract Transactions [8.32630869646569]
We present a viable technological roadmap for the community toward this ambitious goal.
Our technology, called Theorem-Carrying-Transaction (TCT), combines the benefits of concrete execution and symbolic proofs.
Our prototype incurs a negligible runtime overhead, two orders of magnitude lower than a state-of-the-art approach.
arXiv Detail & Related papers (2024-08-12T20:27:41Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
We propose a Dual-view Aware Smart Contract Vulnerability Detection Framework named DVDet.
The framework initially converts the source code and bytecode of smart contracts into weighted graphs and control flow sequences.
Comprehensive experiments on the dataset show that our method outperforms others in detecting vulnerabilities.
arXiv Detail & Related papers (2024-06-29T06:47:51Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Crypters are pieces of software whose main goal is to transform a target binary so it can avoid detection from Anti Viruses (AVs) applications.
The crypter-as-a-service model has gained popularity, in response to the increased sophistication of detection mechanisms.
This paper provides the first study on an online underground market dedicated to crypter-as-a-service.
arXiv Detail & Related papers (2024-05-20T08:35:39Z) - Solvent: liquidity verification of smart contracts [2.680854115314008]
A current limitation of smart contract verification tools is that they are not really effective in expressing and verifying liquidity properties regarding the exchange of crypto-assets.
We propose solvent, a tool aimed at verifying these kinds of properties, which are beyond the reach of existing verification tools for Solidity.
arXiv Detail & Related papers (2024-04-27T10:54:50Z) - LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts [15.071155232677643]
Decentralized Finance (DeFi) incidents have resulted in financial damages exceeding 3 billion US dollars.
Current detection tools face significant challenges in identifying attack activities effectively.
We propose a new direction for detecting DeFi attacks that focuses on identifying adversarial contracts.
arXiv Detail & Related papers (2024-01-14T11:39:33Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.