論文の概要: Deep-Unfolding for Next-Generation Transceivers
- arxiv url: http://arxiv.org/abs/2305.08303v1
- Date: Mon, 15 May 2023 02:13:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 16:17:54.331495
- Title: Deep-Unfolding for Next-Generation Transceivers
- Title(参考訳): 次世代トランシーバの深部展開
- Authors: Qiyu Hu, Yunlong Cai, Guangyi Zhang, Guanding Yu, Geoffrey Ye Li
- Abstract要約: 次世代マルチインプット・マルチアウトプット(MIMO)トランシーバの定義に関する研究が進められている。
無線通信における先進トランシーバーの設計において、しばしば反復アルゴリズムにつながる最適化アプローチは大きな成功を収めた。
ディープニューラルネットワーク(DNN)で反復アルゴリズムを近似するディープラーニングは、計算時間を著しく短縮することができる。
ディープラーニングと反復アルゴリズムの両方の利点を取り入れたディープアンフォールディングが登場し、反復アルゴリズムを階層的な構造に展開している。
- 参考スコア(独自算出の注目度): 49.338084953253755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The stringent performance requirements of future wireless networks, such as
ultra-high data rates, extremely high reliability and low latency, are spurring
worldwide studies on defining the next-generation multiple-input
multiple-output (MIMO) transceivers. For the design of advanced transceivers in
wireless communications, optimization approaches often leading to iterative
algorithms have achieved great success for MIMO transceivers. However, these
algorithms generally require a large number of iterations to converge, which
entails considerable computational complexity and often requires fine-tuning of
various parameters. With the development of deep learning, approximating the
iterative algorithms with deep neural networks (DNNs) can significantly reduce
the computational time. However, DNNs typically lead to black-box solvers,
which requires amounts of data and extensive training time. To further overcome
these challenges, deep-unfolding has emerged which incorporates the benefits of
both deep learning and iterative algorithms, by unfolding the iterative
algorithm into a layer-wise structure analogous to DNNs. In this article, we
first go through the framework of deep-unfolding for transceiver design with
matrix parameters and its recent advancements. Then, some endeavors in applying
deep-unfolding approaches in next-generation advanced transceiver design are
presented. Moreover, some open issues for future research are highlighted.
- Abstract(参考訳): 超高データレート、極端に高い信頼性、低レイテンシといった将来のワイヤレスネットワークのパフォーマンス要件は、次世代マルチインプット多重出力(mimo)トランスシーバの定義に関する世界的な研究を刺激している。
無線通信における先進トランシーバの設計において、しばしば反復アルゴリズムにつながる最適化アプローチはMIMOトランシーバにとって大きな成功を収めた。
しかし、これらのアルゴリズムは通常、多くの反復を収束させる必要があり、計算の複雑さが伴い、様々なパラメータの微調整がしばしば必要となる。
ディープラーニングの開発により、深層ニューラルネットワーク(DNN)による反復アルゴリズムの近似により、計算時間が大幅に短縮される。
しかし、DNNは通常、大量のデータと広範なトレーニング時間を必要とするブラックボックスソルバにつながる。
これらの課題をさらに克服するために、ディープラーニングと反復アルゴリズムの両方の利点を取り入れたディープアンフォールディングが登場し、反復アルゴリズムをDNNに似たレイヤーワイド構造に展開した。
本稿ではまず,行列パラメータを用いたトランシーバ設計のためのディープアンフォールディングの枠組みとその最近の進歩について述べる。
そこで,次世代の先進トランシーバ設計における深部展開手法の適用について述べる。
さらに,今後の研究におけるオープンな課題が強調されている。
関連論文リスト
- State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
大規模アクセスはIoT(Internet of Things)ネットワークにおける重要な設計課題である。
我々は、マルチアンテナベースステーション(BS)と多数の単一アンテナIoTデバイスを備えたIoTネットワークの無許可アップリンク伝送を検討する。
本稿では,低計算複雑性と高ロバスト性を実現するために,ディープニューラルネットワークに基づく新しいアルゴリズムアンローリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-19T05:23:05Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
ニューラルネットワークとディープラーニングが現在の研究パラダイムに影響を与え始めている。
DSPプロセッサは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成的敵ネットワーク操作を実行することができない。
異なるアルゴリズムは、ニューラルネットワーク、アクティベーション機能、畳み込みニューラルネットワーク、生成対向ネットワークにおける高速なパフォーマンスに適合するDSPプロセッサを設計するために適合している。
論文 参考訳(メタデータ) (2021-06-06T13:23:06Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
大規模マルチインプット多重出力(MIMO)ネットワークにおいて最適なビームフォーマを見つけることはよく知られている問題である。
本稿では,この問題に対処するための新しい深層学習に基づく論文アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-08T12:48:06Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Deep Unfolded Multicast Beamforming [20.50873301895484]
マルチキャストビームフォーミングはマルチキャスト通信において有望な技術である。
ビームフォーミング設計のための深層学習に基づくアプローチが提案されている。
本稿では,高スケーラビリティ・高効率の深部展開型トレーニング可能なビームフォーミング設計を提案する。
論文 参考訳(メタデータ) (2020-04-20T14:44:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。