論文の概要: Enhancing Performance of Vision Transformers on Small Datasets through
Local Inductive Bias Incorporation
- arxiv url: http://arxiv.org/abs/2305.08551v1
- Date: Mon, 15 May 2023 11:23:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 14:54:19.203629
- Title: Enhancing Performance of Vision Transformers on Small Datasets through
Local Inductive Bias Incorporation
- Title(参考訳): 局所インダクティブバイアス導入による小型データセットにおける視覚トランスフォーマーの性能向上
- Authors: Ibrahim Batuhan Akkaya, Senthilkumar S. Kathiresan, Elahe Arani,
Bahram Zonooz
- Abstract要約: ビジョントランスフォーマー(ViT)は、大規模なデータセットでは顕著なパフォーマンスを達成するが、小さなデータセットでは畳み込みニューラルネットワーク(CNN)よりもパフォーマンスが悪くなる傾向がある。
本稿では、パッチレベルのローカル情報を抽出し、ViTの自己保持ブロックで使用される埋め込みに組み込む、ローカルInFormation Enhancer (LIFE) と呼ばれるモジュールを提案する。
提案するモジュールはメモリと効率が良く, 分類や蒸留トークンなどの補助トークンを処理できるほど柔軟である。
- 参考スコア(独自算出の注目度): 13.056764072568749
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vision transformers (ViTs) achieve remarkable performance on large datasets,
but tend to perform worse than convolutional neural networks (CNNs) when
trained from scratch on smaller datasets, possibly due to a lack of local
inductive bias in the architecture. Recent studies have therefore added
locality to the architecture and demonstrated that it can help ViTs achieve
performance comparable to CNNs in the small-size dataset regime. Existing
methods, however, are architecture-specific or have higher computational and
memory costs. Thus, we propose a module called Local InFormation Enhancer
(LIFE) that extracts patch-level local information and incorporates it into the
embeddings used in the self-attention block of ViTs. Our proposed module is
memory and computation efficient, as well as flexible enough to process
auxiliary tokens such as the classification and distillation tokens. Empirical
results show that the addition of the LIFE module improves the performance of
ViTs on small image classification datasets. We further demonstrate how the
effect can be extended to downstream tasks, such as object detection and
semantic segmentation. In addition, we introduce a new visualization method,
Dense Attention Roll-Out, specifically designed for dense prediction tasks,
allowing the generation of class-specific attention maps utilizing the
attention maps of all tokens.
- Abstract(参考訳): ビジョントランスフォーマー(ViT)は、大規模なデータセットで顕著なパフォーマンスを達成するが、小さなデータセットでスクラッチからトレーニングした場合には、アーキテクチャに局所的な帰納バイアスがないため、畳み込みニューラルネットワーク(CNN)よりもパフォーマンスが悪くなる傾向がある。
それゆえ、近年の研究はアーキテクチャに局所性を加え、小規模データセットでcnnに匹敵するパフォーマンスを達成するのに役立つことを示した。
しかし、既存の手法はアーキテクチャに特化しているか、計算コストとメモリコストが高い。
そこで本研究では,パッチレベルの局所情報を抽出し,vitsの自己参照ブロックで使用する埋め込みに組み込む,ローカル情報エンハンサー(life)と呼ばれるモジュールを提案する。
提案するモジュールは,メモリと計算の効率が良く,分類や蒸留トークンなどの補助トークンを処理できるほど柔軟である。
実験の結果,lifeモジュールの追加により,小型画像分類データセットにおけるvitsの性能が向上した。
さらに、オブジェクト検出やセマンティックセグメンテーションといった下流タスクにその効果をどのように拡張できるかを示す。
さらに,各トークンのアテンションマップを利用したクラス固有のアテンションマップの生成を可能にする,高密度な予測タスクに特化した新しい可視化手法Dense Attention Roll-Outを導入する。
関連論文リスト
- Exploiting Local Features and Range Images for Small Data Real-Time Point Cloud Semantic Segmentation [4.02235104503587]
本稿では,3次元表現から得られる情報を利用して局所的な特徴を巧みにとらえる。
GPUベースのKDTreeは、素早いビルド、クエリ、プロジェクションの強化を、簡単な操作で実現している。
我々は,本モデルの縮小バージョンが,本格的な最先端モデルに対して強い競争力を示すだけでなく,リアルタイムに動作することを示す。
論文 参考訳(メタデータ) (2024-10-14T13:49:05Z) - Adaptive Masking Enhances Visual Grounding [12.793586888511978]
ローショット学習シナリオにおける語彙接地を改善するために,ガウス放射変調を用いた画像解釈型マスキングを提案する。
我々はCOCOやODinWを含むベンチマークデータセットに対するアプローチの有効性を評価し、ゼロショットタスクや少数ショットタスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-04T05:48:02Z) - DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention [1.5624421399300303]
本稿では、畳み込みニューラルネットワーク(CNN)の特徴抽出機能と視覚変換器(ViT)の高度な表現可能性とを包括的に統合した新しい階層型トランスフォーマーモデルを提案する。
インダクティブバイアスの欠如と、ViTの広範囲なトレーニングデータセットへの依存に対処するため、我々のモデルはCNNバックボーンを使用して階層的な視覚表現を生成する。
これらの表現は、革新的なパッチトークン化を通じてトランスフォーマー入力に適合する。
論文 参考訳(メタデータ) (2024-07-18T22:15:35Z) - Laplacian-Former: Overcoming the Limitations of Vision Transformers in
Local Texture Detection [3.784298636620067]
Vision Transformer (ViT) モデルは、幅広いコンピュータビジョンタスクにおいてブレークスルーを実証している。
これらのモデルは、画像の高周波成分を捉えるのに苦労しており、局所的なテクスチャやエッジ情報を検出する能力を制限することができる。
本稿では,ラプラシアンピラミッド内の周波数情報を適応的に補正することで自己注意マップを向上する新しい手法であるラプラシアン・フォーマーを提案する。
論文 参考訳(メタデータ) (2023-08-31T19:56:14Z) - Vision Transformers: From Semantic Segmentation to Dense Prediction [139.15562023284187]
視覚的予測のための視覚変換器(ViT)のグローバルな文脈学習の可能性について検討する。
我々のモチベーションは、グローバルコンテキストを全受容界層で学習することで、ViTがより強力な長距離依存性情報を取得することである。
階層型ローカル・グローバル・トランスフォーマー (HLG) のファミリを定式化し, 窓内部の局所的な注意と, ピラミッド建築における窓全体のグローバルアテンションを特徴とする。
論文 参考訳(メタデータ) (2022-07-19T15:49:35Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
同時に、複数のアップストリームとダウンストリームのタスクで1つのモデルをトレーニングする。
共ファインタニングは、同じデータ量を使用する場合、従来のトランスファーラーニングよりも優れていることを示す。
さらに、複数のアップストリームデータセットへのアプローチを簡単に拡張して、パフォーマンスをさらに向上する方法も示しています。
論文 参考訳(メタデータ) (2022-07-08T10:25:47Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Efficient Training of Visual Transformers with Small-Size Datasets [64.60765211331697]
進化的ネットワーク(CNN)に代わるアーキテクチャパラダイムとして、ビジュアルトランスフォーマー(VT)が登場している。
ImageNetでトレーニングされた場合、同等の精度を持つにもかかわらず、より小さなデータセットでのパフォーマンスは、大きく異なる可能性があることを示す。
本稿では,計算オーバーヘッドの少ない画像から追加情報を抽出できる自己教師型タスクを提案する。
論文 参考訳(メタデータ) (2021-06-07T16:14:06Z) - Scene Understanding for Autonomous Driving [0.0]
Detectron2で提示されたRetinaNet, Faster R-CNN, Mask R-CNNの異なる構成の挙動を検討する。
関心のあるデータセット上でこれらのモデルを微調整した後、パフォーマンスの大幅な改善を観察します。
文脈外のデータセットを用いて異常な状況下で推論を行い、興味深い結果を示す。
論文 参考訳(メタデータ) (2021-05-11T09:50:05Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。