論文の概要: DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention
- arxiv url: http://arxiv.org/abs/2407.13920v1
- Date: Thu, 18 Jul 2024 22:15:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 19:23:11.966802
- Title: DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention
- Title(参考訳): DuoFormer: ローカルおよびグローバルアテンションによる階層的視覚表現の活用
- Authors: Xiaoya Tang, Bodong Zhang, Beatrice S. Knudsen, Tolga Tasdizen,
- Abstract要約: 本稿では、畳み込みニューラルネットワーク(CNN)の特徴抽出機能と視覚変換器(ViT)の高度な表現可能性とを包括的に統合した新しい階層型トランスフォーマーモデルを提案する。
インダクティブバイアスの欠如と、ViTの広範囲なトレーニングデータセットへの依存に対処するため、我々のモデルはCNNバックボーンを使用して階層的な視覚表現を生成する。
これらの表現は、革新的なパッチトークン化を通じてトランスフォーマー入力に適合する。
- 参考スコア(独自算出の注目度): 1.5624421399300303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We here propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs). Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations. These representations are then adapted for transformer input through an innovative patch tokenization. We also introduce a 'scale attention' mechanism that captures cross-scale dependencies, complementing patch attention to enhance spatial understanding and preserve global perception. Our approach significantly outperforms baseline models on small and medium-sized medical datasets, demonstrating its efficiency and generalizability. The components are designed as plug-and-play for different CNN architectures and can be adapted for multiple applications. The code is available at https://github.com/xiaoyatang/DuoFormer.git.
- Abstract(参考訳): 本稿では、畳み込みニューラルネットワーク(CNN)の機能抽出機能と、視覚変換器(ViT)の高度な表現可能性とを包括的に統合した新しい階層型トランスフォーマーモデルを提案する。
インダクティブバイアスの欠如と、ViTの広範囲なトレーニングデータセットへの依存に対処するため、我々のモデルはCNNバックボーンを使用して階層的な視覚表現を生成する。
これらの表現は、革新的なパッチトークン化を通じてトランスフォーマー入力に適合する。
また,空間的理解を高め,グローバルな認識を維持するために,パッチアテンションを補完する「スケールアテンション」機構を導入する。
提案手法は,小・中規模の医療データセットのベースラインモデルよりも優れ,その効率性と一般化性を示す。
これらのコンポーネントは異なるCNNアーキテクチャのプラグイン・アンド・プレイとして設計されており、複数のアプリケーションに適応できる。
コードはhttps://github.com/xiaoyatang/DuoFormer.gitで公開されている。
関連論文リスト
- ConvFormer: Combining CNN and Transformer for Medical Image Segmentation [17.88894109620463]
医用画像分割のための階層型CNNとTransformerハイブリッドアーキテクチャであるConvFormerを提案する。
ゼロからトレーニングされたConvFormerは、さまざまなCNNやTransformerベースのアーキテクチャより優れ、最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2022-11-15T23:11:22Z) - Bridging the Gap Between Vision Transformers and Convolutional Neural
Networks on Small Datasets [91.25055890980084]
小さなデータセットでスクラッチからトレーニングする場合、ビジョントランスフォーマー(ViT)と畳み込みニューラルネットワーク(CNN)の間には、依然として極端なパフォーマンスギャップがある。
本稿では2つの帰納バイアスを緩和する解として動的ハイブリッドビジョン変換器(DHVT)を提案する。
我々のDHVTは、CIFAR-100が85.68%、22.8Mパラメータが82.3%、ImageNet-1Kが24.0Mパラメータが82.3%の軽量モデルで、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-12T06:54:39Z) - Transformer-Guided Convolutional Neural Network for Cross-View
Geolocalization [20.435023745201878]
本稿ではトランスフォーマー誘導型畳み込みニューラルネットワーク(TransGCNN)アーキテクチャを提案する。
我々のTransGCNNは、入力画像からCNNのバックボーン抽出特徴マップと、グローバルコンテキストをモデル化するTransformerヘッドで構成される。
CVUSAとCVACT_valでそれぞれ94.12%,84.92%の精度を達成した。
論文 参考訳(メタデータ) (2022-04-21T08:46:41Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - Vision Transformer with Deformable Attention [29.935891419574602]
大規模な、時としてグローバルな受信フィールドは、CNNモデルよりも高い表現力を持つTransformerモデルを提供する。
本稿では,キーと値ペアの位置をデータ依存的に選択する,変形可能な新しい自己保持モジュールを提案する。
画像分類と重み付き予測の両方に変形性を考慮した一般的なバックボーンモデルであるDeformable Attention Transformerを提案する。
論文 参考訳(メタデータ) (2022-01-03T08:29:01Z) - Do Vision Transformers See Like Convolutional Neural Networks? [45.69780772718875]
近年の研究では、画像分類タスクにおいて、(Vision) Transformer Model (ViT) が同等またはそれ以上の性能を達成できることが示されている。
畳み込みネットワークのように振る舞うのか、それとも全く異なる視覚表現を学ぶのか?
例えば、ViTはすべての層にわたってより均一な表現を持つ。
論文 参考訳(メタデータ) (2021-08-19T17:27:03Z) - HAT: Hierarchical Aggregation Transformers for Person Re-identification [87.02828084991062]
我々は,CNNとトランスフォーマーの両方の利点を,高性能な画像ベース人物Re-IDに適用する。
作業は、画像ベースのRe-IDのためのCNNとTransformerの両方の利点を初めて活用する。
論文 参考訳(メタデータ) (2021-07-13T09:34:54Z) - Global Filter Networks for Image Classification [90.81352483076323]
本稿では,対数線形複雑度を持つ周波数領域における長期空間依存性を学習する,概念的に単純だが計算効率のよいアーキテクチャを提案する。
この結果から,GFNetはトランスフォーマー型モデルやCNNの効率,一般化能力,堅牢性において,非常に競争力のある代替手段となる可能性が示唆された。
論文 参考訳(メタデータ) (2021-07-01T17:58:16Z) - ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias [76.16156833138038]
コンボリューション, ie, ViTAEから内在性IBを探索するビジョントランスフォーマーを提案する。
ViTAEはいくつかの空間ピラミッド縮小モジュールを備えており、入力イメージをリッチなマルチスケールコンテキストでトークンに埋め込む。
各トランス層では、ViTAEはマルチヘッド自己保持モジュールと平行な畳み込みブロックを持ち、その特徴は融合されフィードフォワードネットワークに供給される。
論文 参考訳(メタデータ) (2021-06-07T05:31:06Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
注意の少ないvIsion Transformerは、畳み込み、完全接続層、自己アテンションが、画像パッチシーケンスを処理するためにほぼ同等な数学的表現を持つという事実に基づいている。
提案したLITは、画像分類、オブジェクト検出、インスタンス分割を含む画像認識タスクにおいて有望な性能を達成する。
論文 参考訳(メタデータ) (2021-05-29T05:26:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。