Temporal and Heterogeneous Graph Neural Network for Financial Time
Series Prediction
- URL: http://arxiv.org/abs/2305.08740v1
- Date: Tue, 9 May 2023 11:17:46 GMT
- Title: Temporal and Heterogeneous Graph Neural Network for Financial Time
Series Prediction
- Authors: Sheng Xiang, Dawei Cheng, Chencheng Shang, Ying Zhang, Yuqi Liang
- Abstract summary: We propose a temporal and heterogeneous graph neural network-based (THGNN) approach to learn the dynamic relations among price movements in financial time series.
We conduct extensive experiments on the stock market in the United States and China.
- Score: 14.056579711850578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The price movement prediction of stock market has been a classical yet
challenging problem, with the attention of both economists and computer
scientists. In recent years, graph neural network has significantly improved
the prediction performance by employing deep learning on company relations.
However, existing relation graphs are usually constructed by handcraft human
labeling or nature language processing, which are suffering from heavy resource
requirement and low accuracy. Besides, they cannot effectively response to the
dynamic changes in relation graphs. Therefore, in this paper, we propose a
temporal and heterogeneous graph neural network-based (THGNN) approach to learn
the dynamic relations among price movements in financial time series. In
particular, we first generate the company relation graph for each trading day
according to their historic price. Then we leverage a transformer encoder to
encode the price movement information into temporal representations. Afterward,
we propose a heterogeneous graph attention network to jointly optimize the
embeddings of the financial time series data by transformer encoder and infer
the probability of target movements. Finally, we conduct extensive experiments
on the stock market in the United States and China. The results demonstrate the
effectiveness and superior performance of our proposed methods compared with
state-of-the-art baselines. Moreover, we also deploy the proposed THGNN in a
real-world quantitative algorithm trading system, the accumulated portfolio
return obtained by our method significantly outperforms other baselines.
Related papers
- Dynamic graph neural networks for enhanced volatility prediction in financial markets [0.0]
This paper proposes a novel approach using Graph Neural Networks (GNNs) to represent global financial markets as dynamic graphs.
By utilizing correlation-based and volatility indices, the Temporal GAT constructs directed graphs that enhance the accuracy of volatility predictions.
arXiv Detail & Related papers (2024-10-22T09:52:15Z) - Evaluating Financial Relational Graphs: Interpretation Before Prediction [4.421486904657393]
We introduce the SPNews dataset, collected based on S&P 500 Index stocks, to facilitate the construction of dynamic relationship graphs.
By using the relationship graph to explain historical financial phenomena, we assess its validity before constructing a graph neural network.
Our evaluation methods can effectively differentiate between various financial relationship graphs, yielding more interpretable results.
arXiv Detail & Related papers (2024-09-28T22:43:00Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive
and Dynamic Stock Investment Prediction [22.430266982219496]
Multi-relational Dynamic Graph Neural Network (MDGNN) framework is proposed.
Our proposed MDGNN framework achieves the best performance in public datasets compared with state-of-the-art (SOTA) stock investment methods.
arXiv Detail & Related papers (2024-01-19T02:51:29Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - GCNET: graph-based prediction of stock price movement using graph
convolutional network [8.122270502556372]
GCNET is a general prediction framework that can be applied for the prediction of the price fluctuations for any set of interacting stocks based on their historical data.
Our experiments and evaluations on sets of stocks from S&P500 and NASDAQ show that GCNET significantly improves the performance of SOTA in terms of accuracy and MCC measures.
arXiv Detail & Related papers (2022-02-19T16:13:44Z) - Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend
Prediction [45.74513775015998]
We present a collaborative temporal-relational modeling framework for end-to-end stock trend prediction.
A novel hypergraph tri-attention network (HGTAN) is proposed to augment the hypergraph convolutional networks.
In this manner, HGTAN adaptively determines the importance of nodes, hyperedges, and hypergraphs during the information propagation among stocks.
arXiv Detail & Related papers (2021-07-22T02:16:09Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - Multi-Graph Convolutional Network for Relationship-Driven Stock Movement
Prediction [19.58023036416987]
We propose a deep learning framework, called Multi-GCGRU, to predict stock movement.
We first encode multiple relationships among stocks into graphs based on financial domain knowledge.
To further get rid of prior knowledge, we explore an adaptive relationship learned by data automatically.
arXiv Detail & Related papers (2020-05-11T09:31:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.