Evaluating Financial Relational Graphs: Interpretation Before Prediction
- URL: http://arxiv.org/abs/2410.07216v1
- Date: Sat, 28 Sep 2024 22:43:00 GMT
- Title: Evaluating Financial Relational Graphs: Interpretation Before Prediction
- Authors: Yingjie Niu, Lanxin Lu, Rian Dolphin, Valerio Poti, Ruihai Dong,
- Abstract summary: We introduce the SPNews dataset, collected based on S&P 500 Index stocks, to facilitate the construction of dynamic relationship graphs.
By using the relationship graph to explain historical financial phenomena, we assess its validity before constructing a graph neural network.
Our evaluation methods can effectively differentiate between various financial relationship graphs, yielding more interpretable results.
- Score: 4.421486904657393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and robust stock trend forecasting has been a crucial and challenging task, as stock price changes are influenced by multiple factors. Graph neural network-based methods have recently achieved remarkable success in this domain by constructing stock relationship graphs that reflect internal factors and relationships between stocks. However, most of these methods rely on predefined factors to construct static stock relationship graphs due to the lack of suitable datasets, failing to capture the dynamic changes in stock relationships. Moreover, the evaluation of relationship graphs in these methods is often tied to the performance of neural network models on downstream tasks, leading to confusion and imprecision. To address these issues, we introduce the SPNews dataset, collected based on S\&P 500 Index stocks, to facilitate the construction of dynamic relationship graphs. Furthermore, we propose a novel set of financial relationship graph evaluation methods that are independent of downstream tasks. By using the relationship graph to explain historical financial phenomena, we assess its validity before constructing a graph neural network, ensuring the graph's effectiveness in capturing relevant financial relationships. Experimental results demonstrate that our evaluation methods can effectively differentiate between various financial relationship graphs, yielding more interpretable results compared to traditional approaches. We make our source code publicly available on GitHub to promote reproducibility and further research in this area.
Related papers
- DGDNN: Decoupled Graph Diffusion Neural Network for Stock Movement
Prediction [8.7861010791349]
We propose a novel graph learning approach implemented without expert knowledge to address these issues.
First, our approach automatically constructs dynamic stock graphs by entropy-driven edge generation from a signal processing perspective.
Last, a decoupled representation learning scheme is adopted to capture distinctive hierarchical intra-stock features.
arXiv Detail & Related papers (2024-01-03T17:36:27Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
We assess attribution methods from a perspective not previously explored in the graph domain: retraining.
The core idea is to retrain the network on important (or not important) relationships as identified by the attributions.
We run our analysis on four state-of-the-art GNN attribution methods and five synthetic and real-world graph classification datasets.
arXiv Detail & Related papers (2024-01-01T02:03:35Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - Temporal and Heterogeneous Graph Neural Network for Financial Time
Series Prediction [14.056579711850578]
We propose a temporal and heterogeneous graph neural network-based (THGNN) approach to learn the dynamic relations among price movements in financial time series.
We conduct extensive experiments on the stock market in the United States and China.
arXiv Detail & Related papers (2023-05-09T11:17:46Z) - Futures Quantitative Investment with Heterogeneous Continual Graph
Neural Network [13.882054287609021]
This study aims to address the challenges of futures price prediction in high-frequency trading (HFT) by proposing a continuous learning factor predictor based on graph neural networks.
The model integrates multi- pricing theories with real-time market dynamics, effectively bypassing the limitations of existing methods.
Empirical tests on 49 commodity futures in China's futures market demonstrate that the proposed model outperforms other state-of-the-art models in terms of prediction accuracy.
arXiv Detail & Related papers (2023-03-29T08:39:36Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Sparse Graph Learning from Spatiotemporal Time Series [16.427698929775023]
We propose a graph learning framework that learns the relational dependencies as distributions over graphs.
We show that the proposed solution can be used as a stand-alone graph identification procedure as well as a graph learning component of an end-to-end forecasting architecture.
arXiv Detail & Related papers (2022-05-26T17:02:43Z) - Algorithms for Learning Graphs in Financial Markets [5.735035463793008]
We investigate the fundamental problem of learning undirected graphical models under Laplacian structural constraints.
We present natural justifications, supported by empirical evidence, for the usage of the Laplacian matrix as a model for the precision matrix of financial assets.
We design numerical algorithms based on the alternating direction method of multipliers to learn undirected, weighted graphs.
arXiv Detail & Related papers (2020-12-31T02:48:35Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.