論文の概要: Automating privacy decisions -- where to draw the line?
- arxiv url: http://arxiv.org/abs/2305.08747v1
- Date: Mon, 15 May 2023 15:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 13:57:45.502086
- Title: Automating privacy decisions -- where to draw the line?
- Title(参考訳): プライバシー判断の自動化 -- 線を引く場所は?
- Authors: Victor Morel and Simone Fischer-H\"ubner
- Abstract要約: ユーザーは個人情報を管理するプライバシー決定に圧倒されることが多い。
本稿では,プライバシー決定の自動化によってもたらされる主な課題について概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Users are often overwhelmed by privacy decisions to manage their personal
data, which can happen on the web, in mobile, and in IoT environments. These
decisions can take various forms -- such as decisions for setting privacy
permissions or privacy preferences, decisions responding to consent requests,
or to intervene and ``reject'' processing of one's personal data --, and each
can have different legal impacts.
In all cases and for all types of decisions, scholars and industry have been
proposing tools to better automate the process of privacy decisions at
different levels, in order to enhance usability.
We provide in this paper an overview of the main challenges raised by the
automation of privacy decisions, together with a classification scheme of the
existing and envisioned work and proposals addressing automation of privacy
decisions.
- Abstract(参考訳): ユーザは、Webやモバイル、IoT環境で起こりうる個人情報を管理するためのプライバシ決定に圧倒されることが多い。
これらの決定は、プライバシ権限やプライバシ優先の設定の決定、同意要求への対応の決定、あるいは個人データの‘reject’処理に介入するなど、さまざまな形態を取ることができ、それぞれが異なる法的影響を持つことができる。
あらゆるケースとあらゆる種類の意思決定において、学者や業界は、ユーザビリティを高めるために、さまざまなレベルでプライバシー決定のプロセスをより良く自動化するためのツールを提案してきた。
本稿では,プライバシ決定の自動化によって生じる主な課題の概要と,既存かつ想定されている作業の分類と,プライバシ決定の自動化に取り組む提案について述べる。
関連論文リスト
- Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
この章は、"Differential Privacy in Artificial Intelligence: From Theory to Practice"という本の一部である。
まず、データのプライバシ保護のためのさまざまな試みについて説明し、その失敗の場所と理由を強調した。
次に、プライバシ保護データ分析の領域を構成する重要なアクター、タスク、スコープを定義する。
論文 参考訳(メタデータ) (2024-11-07T13:52:11Z) - Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Assessing Mobile Application Privacy: A Quantitative Framework for Privacy Measurement [0.0]
この研究は、プライバシを優先し、情報に基づく意思決定を促進し、プライバシ保護設計原則を支持したデジタル環境に貢献することを目的としている。
このフレームワークの目的は、特定のAndroidアプリケーションを使用する際のプライバシーリスクのレベルを体系的に評価することである。
論文 参考訳(メタデータ) (2023-10-31T18:12:19Z) - Tapping into Privacy: A Study of User Preferences and Concerns on
Trigger-Action Platforms [0.0]
モノのインターネット(IoT)デバイスの人気は急速に高まり、インターネットに接続されたデバイスを継続的に監視する人が増えている。
この研究は、IoT(Internet of Things)のコンテキストにおいて、Trigger-Action Platform(TAP)に関連するエンドユーザのプライバシ上の懸念と期待について調査する。
TAPでは、特定のイベントや条件に基づいてアクションをトリガーするルールを作成することで、スマート環境をカスタマイズすることができる。
論文 参考訳(メタデータ) (2023-08-11T14:25:01Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
差分プライバシ(DP)分野における現状と現状の方法論の詳細なレビューを行う。
論文のポイントとハイレベルな内容は,「認知プライバシ(DP:次のフロンティアへの挑戦)」の議論から生まれた。
この記事では、プライバシの領域におけるアルゴリズムおよび設計決定の基準点を提供することを目標とし、重要な課題と潜在的研究の方向性を強調します。
論文 参考訳(メタデータ) (2023-04-14T05:29:18Z) - Leveraging Privacy Profiles to Empower Users in the Digital Society [7.350403786094707]
市民のプライバシーと倫理は、ますますデジタル化されつつある社会によってもたらされる懸念の中核にある。
我々は、フィットネス領域から収集された既存のデータセットに関する実証的研究を通じて、プライバシの次元に注目し、上記の方向のステップに貢献する。
その結果、セマンティック駆動型質問のコンパクトなセットは、複雑なドメイン依存質問よりもユーザを識別するのに役立つことがわかった。
論文 参考訳(メタデータ) (2022-04-01T15:31:50Z) - Differential Privacy and Fairness in Decisions and Learning Tasks: A
Survey [50.90773979394264]
プライバシーと公正が目標と一致したり、対照的になったりした条件をレビューする。
意思決定問題や学習タスクにおいて、DPが偏見や不公平を悪化させる理由と理由を分析します。
論文 参考訳(メタデータ) (2022-02-16T16:50:23Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。