論文の概要: Assessing Mobile Application Privacy: A Quantitative Framework for Privacy Measurement
- arxiv url: http://arxiv.org/abs/2311.00066v1
- Date: Tue, 31 Oct 2023 18:12:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 23:41:48.543988
- Title: Assessing Mobile Application Privacy: A Quantitative Framework for Privacy Measurement
- Title(参考訳): モバイルアプリのプライバシを評価する - プライバシ測定のための定量的フレームワーク
- Authors: Joao Marono, Catarina Silva, Joao P. Barraca, Vitor Cunha, Paulo Salvador,
- Abstract要約: この研究は、プライバシを優先し、情報に基づく意思決定を促進し、プライバシ保護設計原則を支持したデジタル環境に貢献することを目的としている。
このフレームワークの目的は、特定のAndroidアプリケーションを使用する際のプライバシーリスクのレベルを体系的に評価することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of mobile applications and the subsequent sharing of personal data with service and application providers have given rise to substantial privacy concerns. Application marketplaces have introduced mechanisms to conform to regulations and provide individuals with control over their data. However, a notable absence persists regarding clear indications, labels or scores elucidating the privacy implications of these applications. In response to this challenge, this paper introduces a privacy quantification framework. The purpose of this framework is to systematically evaluate the level of privacy risk when using particular Android applications. The main goal is to provide individuals with qualitative labels to make informed decisions about their privacy. This work aims to contribute to a digital environment that prioritizes privacy, promotes informed decision-making, and endorses the privacy-preserving design principles incorporation.
- Abstract(参考訳): モバイルアプリケーションの普及と、その後のサービスやアプリケーションプロバイダとの個人データの共有は、重大なプライバシー上の懸念を引き起こしている。
アプリケーションマーケットプレースは、規制に準拠し、個人にデータのコントロールを提供するメカニズムを導入している。
しかし、明確な表示、ラベル、スコアに関する顕著な欠如は、これらのアプリケーションのプライバシーへの影響を解明する。
この課題に対して,本稿では,プライバシ定量化フレームワークを提案する。
このフレームワークの目的は、特定のAndroidアプリケーションを使用する際のプライバシーリスクのレベルを体系的に評価することである。
主な目標は、個人に質的なラベルを提供することで、プライバシに関する決定を下すことだ。
この研究は、プライバシを優先し、情報に基づく意思決定を促進し、プライバシ保護設計原則を定めているデジタル環境に貢献することを目的としている。
関連論文リスト
- Privacy Bills of Materials: A Transparent Privacy Information Inventory for Collaborative Privacy Notice Generation in Mobile App Development [23.578964768900974]
モバイルアプリのプライバシ情報をキャプチャしてコーディネートするための,システマティックなソフトウェアエンジニアリングアプローチであるPriBOMを紹介します。
PriBOMは、透明性中心のプライバシドキュメントと特定のプライバシ通知の作成を促進し、プライバシプラクティスのトレーサビリティと追跡性を可能にする。
論文 参考訳(メタデータ) (2025-01-02T08:14:52Z) - How Privacy-Savvy Are Large Language Models? A Case Study on Compliance and Privacy Technical Review [15.15468770348023]
プライバシ情報抽出(PIE)、法および規制キーポイント検出(KPD)、質問応答(QA)などのプライバシー関連タスクにおいて、大規模言語モデルの性能を評価する。
本稿では, BERT, GPT-3.5, GPT-4, カスタムモデルなど, プライバシコンプライアンスチェックや技術プライバシレビューの実行能力について検討する。
LLMは、プライバシーレビューの自動化と規制上の相違点の特定を約束する一方で、法律標準の進化に完全に準拠する能力において、大きなギャップが持続している。
論文 参考訳(メタデータ) (2024-09-04T01:51:37Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - A Qualitative Analysis Framework for mHealth Privacy Practices [0.0]
本稿では,mHealthアプリにおけるプライバシプラクティスの質的評価のための新しいフレームワークを提案する。
調査では、Androidプラットフォーム上でmHealthをリードする152のアプリを分析した。
以上の結果から,機密情報の誤用や誤用に悩まされていることが示唆された。
論文 参考訳(メタデータ) (2024-05-28T08:57:52Z) - PrivComp-KG : Leveraging Knowledge Graph and Large Language Models for Privacy Policy Compliance Verification [0.0]
本稿では,プライバシコンプライアンスのためのLarge Language Model (LLM)とSemantic Webベースのアプローチを提案する。
PrivComp-KGは、プライバシーポリシーに関する包括的な情報を効率的に保存し、取り出すように設計されている。
各ベンダーが関連するポリシー規則に違反するプライバシーポリシーの遵守を確認するよう問い合わせることができる。
論文 参考訳(メタデータ) (2024-04-30T17:44:44Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
差分プライバシ(DP)分野における現状と現状の方法論の詳細なレビューを行う。
論文のポイントとハイレベルな内容は,「認知プライバシ(DP:次のフロンティアへの挑戦)」の議論から生まれた。
この記事では、プライバシの領域におけるアルゴリズムおよび設計決定の基準点を提供することを目標とし、重要な課題と潜在的研究の方向性を強調します。
論文 参考訳(メタデータ) (2023-04-14T05:29:18Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
この問題に対処するために、説明可能性がどのように役立つかを検討しました。
私たちはプライバシーの説明を作成し、エンドユーザの理由と特定のデータが必要な理由を明らかにするのに役立ちました。
我々の発見は、プライバシーの説明がソフトウェアシステムの信頼性を高めるための重要なステップであることを示している。
論文 参考訳(メタデータ) (2022-10-18T09:30:37Z) - The Evolving Path of "the Right to Be Left Alone" - When Privacy Meets
Technology [0.0]
本稿では,プライバシエコシステムの新たなビジョンとして,プライバシの次元,関連するユーザの期待,プライバシ違反,変化要因を導入することを提案する。
プライバシー問題に取り組むための有望なアプローチは, (i) 効果的なプライバシメトリクスの識別, (ii) プライバシに準拠したアプリケーションを設計するためのフォーマルなツールの採用という,2つの方向に移行している,と私たちは信じています。
論文 参考訳(メタデータ) (2021-11-24T11:27:55Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。