Privacy-Preserving Ensemble Infused Enhanced Deep Neural Network
Framework for Edge Cloud Convergence
- URL: http://arxiv.org/abs/2305.09224v1
- Date: Tue, 16 May 2023 07:01:44 GMT
- Title: Privacy-Preserving Ensemble Infused Enhanced Deep Neural Network
Framework for Edge Cloud Convergence
- Authors: Veronika Stephanie, Ibrahim Khalil, Mohammad Saidur Rahman and
Mohammed Atiquzzaman
- Abstract summary: We propose a privacy-preserving ensemble infused enhanced Deep Neural Network (DNN) based learning framework in this paper.
In the convergence, edge server is used for both storing IoT produced bioimage and hosting algorithm for local model training.
We conduct several experiments to evaluate the performance of our proposed framework.
- Score: 18.570317928688606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a privacy-preserving ensemble infused enhanced Deep Neural Network
(DNN) based learning framework in this paper for Internet-of-Things (IoT),
edge, and cloud convergence in the context of healthcare. In the convergence,
edge server is used for both storing IoT produced bioimage and hosting DNN
algorithm for local model training. The cloud is used for ensembling local
models. The DNN-based training process of a model with a local dataset suffers
from low accuracy, which can be improved by the aforementioned convergence and
Ensemble Learning. The ensemble learning allows multiple participants to
outsource their local model for producing a generalized final model with high
accuracy. Nevertheless, Ensemble Learning elevates the risk of leaking
sensitive private data from the final model. The proposed framework presents a
Differential Privacy-based privacy-preserving DNN with Transfer Learning for a
local model generation to ensure minimal loss and higher efficiency at edge
server. We conduct several experiments to evaluate the performance of our
proposed framework.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals [58.83169560132308]
We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of very large neural networks.
NNsight is an open-source system that extends PyTorch to introduce deferred remote execution.
NDIF is a scalable inference service that executes NNsight requests, allowing users to share GPU resources and pretrained models.
arXiv Detail & Related papers (2024-07-18T17:59:01Z) - EdgeConvEns: Convolutional Ensemble Learning for Edge Intelligence [0.0]
Deep edge intelligence aims to deploy deep learning models that demand computationally expensive training in the edge network with limited computational power.
This study proposes a convolutional ensemble learning approach, coined EdgeConvEns, that facilitates training heterogeneous weak models on edge and learning to ensemble them where data on edge are heterogeneously distributed.
arXiv Detail & Related papers (2023-07-25T20:07:32Z) - Stochastic Coded Federated Learning: Theoretical Analysis and Incentive
Mechanism Design [18.675244280002428]
We propose a novel FL framework named coded federated learning (SCFL) that leverages coded computing techniques.
In SCFL, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding noise to the projected local dataset.
We show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods.
arXiv Detail & Related papers (2022-11-08T09:58:36Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Combined Learning of Neural Network Weights for Privacy in Collaborative
Tasks [1.1172382217477126]
CoLN, Combined Learning of Neural network weights, is a novel method to securely combine Machine Learning models over sensitive data with no sharing of data.
CoLN can contribute to secure collaborative research, as required in the medical area, where privacy issues preclude data sharing.
arXiv Detail & Related papers (2022-04-30T22:40:56Z) - Semi-Decentralized Federated Edge Learning with Data and Device
Heterogeneity [6.341508488542275]
Federated edge learning (FEEL) has attracted much attention as a privacy-preserving paradigm to effectively incorporate the distributed data at the network edge for training deep learning models.
In this paper, we investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL), where multiple edge servers are employed to collectively coordinate a large number of client nodes.
By exploiting the low-latency communication among edge servers for efficient model sharing, SD-FEEL can incorporate more training data, while enjoying much lower latency compared with conventional federated learning.
arXiv Detail & Related papers (2021-12-20T03:06:08Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
Federated learning is a machine learning setting where a set of edge devices collaboratively train a model under the orchestration of a central server.
In this paper, we develop a federated learning approach that addresses the privacy challenge without much degradation on model utility.
We provide a tight end-to-end privacy guarantee of our approach and analyze its theoretical convergence rates.
arXiv Detail & Related papers (2020-03-30T19:20:42Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.