論文の概要: Multi-modal Visual Understanding with Prompts for Semantic Information
Disentanglement of Image
- arxiv url: http://arxiv.org/abs/2305.09333v1
- Date: Tue, 16 May 2023 10:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 15:15:33.208673
- Title: Multi-modal Visual Understanding with Prompts for Semantic Information
Disentanglement of Image
- Title(参考訳): 画像のセマンティック・インフォメーション・ディスタングルのためのプロンプトを用いたマルチモーダル視覚理解
- Authors: Yuzhou Peng
- Abstract要約: プロンプト付き画像のマルチモーダル視覚的理解は、画像の意味的理解を強化するために様々な視覚的およびテキスト的手がかりを使用する。
プロンプトベースの手法を利用することで、下流タスクに有用な情報を抽出するために、モデルが画像の特定の特徴にフォーカスすることを学ぶことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal visual understanding of images with prompts involves using
various visual and textual cues to enhance the semantic understanding of
images. This approach combines both vision and language processing to generate
more accurate predictions and recognition of images. By utilizing prompt-based
techniques, models can learn to focus on certain features of an image to
extract useful information for downstream tasks. Additionally, multi-modal
understanding can improve upon single modality models by providing more robust
representations of images. Overall, the combination of visual and textual
information is a promising area of research for advancing image recognition and
understanding. In this paper we will try an amount of prompt design methods and
propose a new method for better extraction of semantic information
- Abstract(参考訳): プロンプトによる画像のマルチモーダル視覚理解は、画像の意味理解を強化するために様々な視覚的およびテキスト的手がかりを使用する。
このアプローチは、視覚と言語処理を組み合わせることで、より正確な予測と画像認識を生成する。
プロンプトベースの技術を利用することで、モデルは画像の特定の特徴に焦点を合わせ、下流タスクに有用な情報を抽出することを学ぶことができる。
さらに、画像のより堅牢な表現を提供することにより、単一のモダリティモデルを改善することができる。
全体的に、視覚情報とテキスト情報の組み合わせは、画像認識と理解の進歩に有望な研究分野である。
本稿では,多くのプロンプト設計手法を試行し,セマンティック情報抽出のための新しい手法を提案する。
関連論文リスト
- LLaVA-Read: Enhancing Reading Ability of Multimodal Language Models [60.67899965748755]
両ビジュアルエンコーダとビジュアルテキストエンコーダを併用したマルチモーダル大規模言語モデルであるLLaVA-Readを提案する。
我々の研究は、ビジュアルテキスト理解は依然としてオープンな課題であり、将来のマルチモーダルシステムにとって効率的なビジュアルテキストエンコーダが不可欠であることを示唆している。
論文 参考訳(メタデータ) (2024-07-27T05:53:37Z) - Enhancing Vision Models for Text-Heavy Content Understanding and Interaction [0.0]
画像エンコーディングのためのCLIPとMassive Text Embedding Benchmarkのモデルを統合したビジュアルチャットアプリケーションを構築した。
プロジェクトの目的は、複雑な視覚的テキストデータ相互接続データの理解において、先進視覚モデルの能力を高め、強化することである。
論文 参考訳(メタデータ) (2024-05-31T15:17:47Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Enhancing Image Retrieval : A Comprehensive Study on Photo Search using
the CLIP Mode [0.27195102129095]
写真検索はCLIP(Contrastive Language- Image Pretraining)モデルの導入によって大きな進歩をみせた。
この要約は、CLIPの基本原理を要約し、写真検索の分野を前進させる可能性を強調している。
論文 参考訳(メタデータ) (2024-01-24T17:35:38Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
自己教師型学習フレームワークにおける視覚言語表現学習手法を提案する。
画像中の領域をソフトメイキングすることで、画像テキストマッチング(ITM)タスクの多様な特徴を生成する。
マルチモーダルエンコーダを用いて単語条件の視覚的注意を計算し,各単語に関連する領域を同定する。
論文 参考訳(メタデータ) (2023-04-03T05:07:49Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
本研究は,一般的なNLPタスクの補助信号として視覚情報を利用する新しい手法を提案する。
各文に対して、まず、既存の文-画像ペア上で抽出された軽トピック-画像検索テーブルから、フレキシブルな画像を検索する。
そして、テキストと画像はそれぞれトランスフォーマーエンコーダと畳み込みニューラルネットワークによって符号化される。
論文 参考訳(メタデータ) (2023-01-09T13:54:11Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
本稿では,視覚指導から従来の単語埋め込みを視覚的に強調する視覚的表現法を提案する。
各単語が多様な関連画像に対応するマルチモーダルシードデータセットから,小型の単語画像辞書を構築する。
12の自然言語理解および機械翻訳タスクの実験により,提案手法の有効性と一般化能力がさらに検証された。
論文 参考訳(メタデータ) (2020-12-30T09:11:50Z) - Multi-Modal Reasoning Graph for Scene-Text Based Fine-Grained Image
Classification and Retrieval [8.317191999275536]
本稿では,視覚的・テキスト的手がかりの形でマルチモーダルコンテンツを活用することで,微細な画像分類と検索の課題に取り組むことに焦点を当てる。
画像中の有意なオブジェクトとテキスト間の共通意味空間を学習することにより、マルチモーダル推論を行い、関係強化された特徴を得るためにグラフ畳み込みネットワークを用いる。
論文 参考訳(メタデータ) (2020-09-21T12:31:42Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。