論文の概要: Multi-task convolutional neural network for image aesthetic assessment
- arxiv url: http://arxiv.org/abs/2305.09373v2
- Date: Mon, 15 Jan 2024 14:52:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 03:00:08.196620
- Title: Multi-task convolutional neural network for image aesthetic assessment
- Title(参考訳): 画像美的評価のためのマルチタスク畳み込みニューラルネットワーク
- Authors: Derya Soydaner, Johan Wagemans
- Abstract要約: 美的属性を考慮したマルチタスク畳み込みニューラルネットワークを提案する。
提案したニューラルネットワークは、画像の全体的な美的スコアとともに属性を共同で学習する。
我々は,スピアマンのランク相関を考慮に入れた場合,全身の美的スコアからほぼ人間に近いパフォーマンスを得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As people's aesthetic preferences for images are far from understood, image
aesthetic assessment is a challenging artificial intelligence task. The range
of factors underlying this task is almost unlimited, but we know that some
aesthetic attributes affect those preferences. In this study, we present a
multi-task convolutional neural network that takes into account these
attributes. The proposed neural network jointly learns the attributes along
with the overall aesthetic scores of images. This multi-task learning framework
allows for effective generalization through the utilization of shared
representations. Our experiments demonstrate that the proposed method
outperforms the state-of-the-art approaches in predicting overall aesthetic
scores for images in one benchmark of image aesthetics. We achieve near-human
performance in terms of overall aesthetic scores when considering the
Spearman's rank correlations. Moreover, our model pioneers the application of
multi-tasking in another benchmark, serving as a new baseline for future
research. Notably, our approach achieves this performance while using fewer
parameters compared to existing multi-task neural networks in the literature,
and consequently makes our method more efficient in terms of computational
complexity.
- Abstract(参考訳): 画像に対する人々の美的好みが理解できないため、画像美的評価は難しい人工知能タスクである。
このタスクの根底にあるさまざまな要因はほぼ無制限ですが、審美的特性がそれらの嗜好に影響を与えることは分かっています。
本研究では,これらの属性を考慮したマルチタスク畳み込みニューラルネットワークを提案する。
提案するニューラルネットワークは、画像の全体的な美的スコアとともに属性を学習する。
このマルチタスク学習フレームワークは、共有表現を利用した効果的な一般化を可能にする。
提案手法は,画像美学ベンチマークにおいて,画像全体の美学スコアの予測において最先端の手法よりも優れていることを示す。
スパイアマンのランク相関を考慮した場合, 全体的な美的得点の観点で人間に近いパフォーマンスが得られる。
さらに,本モデルではマルチタスクを他のベンチマークに適用し,今後の研究のベースラインとして活用する。
特に本手法は,既存のマルチタスクニューラルネットに比べてパラメータを少ない値で使用しながらこの性能を実現し,計算複雑性の面ではより効率的である。
関連論文リスト
- Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
本稿では,ある絵画の視覚的体験における視聴者の眼球運動分析に焦点を当てた。
我々は、人間の視覚的注意を予測するための新しいアプローチを導入し、人間の認知機能に影響を及ぼす。
提案した新しいアーキテクチャは、画像を取り込んでスキャンパスを返す。
論文 参考訳(メタデータ) (2022-09-22T22:27:08Z) - Modeling, Quantifying, and Predicting Subjectivity of Image Aesthetics [21.46956783120668]
本稿では,主観的美的嗜好をモデル化し,その主観的論理に基づいて定量化できる統一確率的枠組みを提案する。
この枠組みでは、評価分布をベータ分布としてモデル化し、確実に喜ぶ可能性、確実に不幸であり、不確実である可能性を得ることができる。
本稿では,画像美学の予測のための深層ニューラルネットワークの学習手法を提案する。
論文 参考訳(メタデータ) (2022-08-20T12:16:45Z) - Aesthetic Attribute Assessment of Images Numerically on Mixed
Multi-attribute Datasets [16.120684660965978]
我々は、属性(AMD-A)を用いた美的混合データセットと呼ばれる画像属性データセットを構築し、融合のための外部属性特徴を設計する。
我々のモデルは、美的分類、総合評価、属性スコアを達成できる。
MindSporeを用いた実験結果から,本手法は審美的総合評価と属性評価を効果的に改善できることが示された。
論文 参考訳(メタデータ) (2022-07-05T04:42:10Z) - Learning an Adaptation Function to Assess Image Visual Similarities [0.0]
ここでは、類推が重要となるとき、視覚的イメージ類似性を学ぶための特定のタスクに焦点を当てる。
本稿では,異なるスケールとコンテンツデータセットで事前学習した,教師付き,半教師付き,自己教師型ネットワークの比較を提案する。
The Totally Looks Like Image dataset conducted on the Totally Looks Like image highlight the interest of our method, by increase the search scores of the best model @1 by 2.25x。
論文 参考訳(メタデータ) (2022-06-03T07:15:00Z) - Composition and Style Attributes Guided Image Aesthetic Assessment [66.60253358722538]
本稿では,画像の美学を自動予測する手法を提案する。
提案ネットワークには,意味的特徴抽出のための事前学習ネットワーク(Backbone)と,画像属性の予測にBackbone機能に依存するマルチレイヤパーセプトロン(MLP)ネットワーク(AttributeNet)が含まれる。
画像が与えられた場合、提案するマルチネットワークは、スタイルと構成属性、および美的スコア分布を予測できる。
論文 参考訳(メタデータ) (2021-11-08T17:16:38Z) - Neural Knitworks: Patched Neural Implicit Representation Networks [1.0470286407954037]
画像合成を実現する自然画像の暗黙的表現学習のためのアーキテクチャであるKnitworkを提案する。
私たちの知る限りでは、画像のインペインティング、超解像化、デノイングといった合成作業に適した座標ベースのパッチの実装は、これが初めてである。
その結果, ピクセルではなくパッチを用いた自然な画像のモデリングにより, 忠実度が高い結果が得られた。
論文 参考訳(メタデータ) (2021-09-29T13:10:46Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Learning from Few Samples: A Survey [1.4146420810689422]
コンピュータビジョン領域における既存の数ショットメタ学習手法について,その手法と評価指標に基づいて検討する。
我々は、これらの技術のための分類法を提供し、それらをデータ拡張、埋め込み、最適化、セマンティクスに基づく学習に分類する。
論文 参考訳(メタデータ) (2020-07-30T14:28:57Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z) - SideInfNet: A Deep Neural Network for Semi-Automatic Semantic
Segmentation with Side Information [83.03179580646324]
本稿では,新たなディープニューラルネットワークアーキテクチャであるSideInfNetを提案する。
画像から学習した機能とユーザアノテーションから抽出したサイド情報を統合する。
提案手法を評価するために,提案したネットワークを3つのセマンティックセグメンテーションタスクに適用し,ベンチマークデータセットに対する広範な実験を行った。
論文 参考訳(メタデータ) (2020-02-07T06:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。