論文の概要: Capturing Emerging Complexity in Lenia
- arxiv url: http://arxiv.org/abs/2305.09378v4
- Date: Wed, 19 Jul 2023 08:04:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-20 11:13:20.996893
- Title: Capturing Emerging Complexity in Lenia
- Title(参考訳): レニアの新たな複雑さを捉え
- Authors: Sanyam Jain, Aarati Shrestha and Stefano Nichele
- Abstract要約: この研究プロジェクトは、デジタル生物の生態系をシミュレートする人工生命プラットフォームLeniaを調査する。
レニアの生態系は、移動し、消費し、成長し、再生できる単純な人工生物で構成されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research project investigates Lenia, an artificial life platform that
simulates ecosystems of digital creatures. Lenia's ecosystem consists of
simple, artificial organisms that can move, consume, grow, and reproduce. The
platform is important as a tool for studying artificial life and evolution, as
it provides a scalable and flexible environment for creating a diverse range of
organisms with varying abilities and behaviors. Measuring complexity in Lenia
is a key aspect of the study, which identifies the metrics for measuring
long-term complex emerging behavior of rules, with the aim of evolving better
Lenia behaviors which are yet not discovered. The Genetic Algorithm uses
neighborhoods or kernels as genotype while keeping the rest of the parameters
of Lenia as fixed, for example growth function, to produce different behaviors
respective to the population and then measures fitness value to decide the
complexity of the resulting behavior. First, we use Variation over Time as a
fitness function where higher variance between the frames are rewarded. Second,
we use Auto-encoder based fitness where variation of the list of reconstruction
loss for the frames is rewarded. Third, we perform combined fitness where
higher variation of the pixel density of reconstructed frames is rewarded. All
three experiments are tweaked with pixel alive threshold and frames used.
Finally, after performing nine experiments of each fitness for 500 generations,
we pick configurations from all experiments such that there is a scope of
further evolution, and run it for 2500 generations. Results show that the
kernel's center of mass increases with a specific set of pixels and together
with borders the kernel try to achieve a Gaussian distribution.
- Abstract(参考訳): この研究プロジェクトは、デジタル生物の生態系をシミュレートする人工生命プラットフォームLeniaを調査する。
レニアの生態系は、移動し、消費し、成長し、再生できる単純な人工生物から成り立っている。
このプラットフォームは、様々な能力と行動を持つ多様な生物を生み出すためのスケーラブルで柔軟な環境を提供するため、人工生命と進化を研究するためのツールとして重要である。
レニアの複雑さを測定することは、まだ発見されていないレニアの行動を改善することを目的として、ルールの長期的な複雑な出現行動を測定するための指標を特定する研究の重要な側面である。
遺伝的アルゴリズムは、近辺やカーネルを遺伝子型として使用し、レニアの残りのパラメータを例えば成長関数のように固定し、個体群ごとに異なる行動を生成し、その結果生じる行動の複雑さを決定するために適合値を測定する。
まず,フレーム間のばらつきが高まるようなフィットネス機能として,時間とともに変化を利用する。
第2に,フレームの復元損失リストの変動が報われる自動エンコーダベースの適合性を用いる。
第3に、再構成フレームの画素密度のより高い変動が報われるような複合フィットネスを行う。
3つの実験はすべてpixel alive thresholdとフレームで調整されている。
最後に、500世代毎に各フィットネスの9つの実験を行った後、さらなる進化のスコープがあるような全ての実験から構成を選択し、2500世代にわたって実行します。
結果は、核の質量中心は、特定のピクセル集合と、核がガウス分布を達成しようとする境界とともに増加することを示している。
関連論文リスト
- Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
Cellはさまざまなタスクやデータに対して,さまざまなモデルに適応的に進化可能であることを示す。
4つの実世界のデータセットの実験では、細胞は最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-05-29T02:35:23Z) - Phylotrack: C++ and Python libraries for in silico phylogenetic tracking [0.0]
Phylotrackプロジェクトは、シリコの進化における系統の追跡と解析のためのライブラリを提供する。
プロジェクトは,1) Phylotracklibと,2) Phylotrackpy: Phylotracklibを囲むPythonラッパーで,Pybind11で作成された。
論文 参考訳(メタデータ) (2024-05-15T14:47:43Z) - DARLEI: Deep Accelerated Reinforcement Learning with Evolutionary
Intelligence [77.78795329701367]
本稿では,進化アルゴリズムと並列化強化学習を組み合わせたフレームワークであるDARLEIを提案する。
我々はDARLEIの性能を様々な条件で特徴付け、進化形態の多様性に影響を与える要因を明らかにした。
今後DARLEIを拡張して、よりリッチな環境における多様な形態素間の相互作用を取り入れていきたいと考えています。
論文 参考訳(メタデータ) (2023-12-08T16:51:10Z) - The scaling of goals via homeostasis: an evolutionary simulation,
experiment and analysis [0.0]
本研究では, 形態形成過程における細胞の集合的知能を, ホメオスタティックプロセスの中心における目標状態をスケールアップすることによって, 行動知能に転換することを提案する。
これらの創発性形態形成因子は、その標的形態学を達成するために応力伝播ダイナミクスの使用を含む、多くの予測された特徴を示す。
本研究では, 進化が最小目標指向行動(ホメオスタティックループ)をどのように高次問題解決剤に拡大するかを, 定量的に把握するための第一歩として提案する。
論文 参考訳(メタデータ) (2022-11-15T21:48:44Z) - Using Genetic Algorithms to Simulate Evolution [0.0]
将来的な変化を予測するだけでなく,遺伝的アルゴリズムによるプロセスのシミュレートも可能です。
遺伝的アルゴリズムを環境に保持するように最適化することにより、速度、サイズ、クローニング確率などの様々な特性を割り当てることができる。
種がどのように成長し進化するかを学ぶことで、私たちはテクノロジーを改良し、動物が絶滅して生き残るのを助ける方法を見つけ、病気がいかに広がるかを理解することができます。
論文 参考訳(メタデータ) (2022-09-14T00:23:06Z) - Multi-Scale Representation Learning on Proteins [78.31410227443102]
本稿では,タンパク質HoloProtのマルチスケールグラフ構築について紹介する。
表面はタンパク質の粗い詳細を捉え、配列は一次成分であり、構造はより微細な詳細を捉えている。
グラフエンコーダは、各レベルが下のレベル(s)からそのレベルでのグラフとエンコーディングを統合することで、マルチスケール表現を学習する。
論文 参考訳(メタデータ) (2022-04-04T08:29:17Z) - The Introspective Agent: Interdependence of Strategy, Physiology, and
Sensing for Embodied Agents [51.94554095091305]
本論では, 環境の文脈において, 自己能力を考慮した内省的エージェントについて論じる。
自然と同じように、私たちは戦略を1つのツールとして再編成して、環境において成功させたいと考えています。
論文 参考訳(メタデータ) (2022-01-02T20:14:01Z) - Task-Agnostic Morphology Evolution [94.97384298872286]
モルフォロジーと振る舞いを共同適用する現在のアプローチでは、特定のタスクの報酬をモルフォロジー最適化のシグナルとして使用します。
これはしばしば高価なポリシー最適化を必要とし、一般化するために構築されていないタスクに依存した形態をもたらす。
我々は,これらの問題を緩和するための新しいアプローチであるタスク非依存形態進化(tame)を提案する。
論文 参考訳(メタデータ) (2021-02-25T18:59:21Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - Meta-Learning through Hebbian Plasticity in Random Networks [12.433600693422235]
生涯学習と適応性は生物学的エージェントの2つの決定的な側面である。
この生物学的メカニズムに着想を得て,シナプス固有のヘビアン学習規則のみを探索する探索法を提案する。
完全にランダムな重みから始めると、発見されたヘビーンの規則により、エージェントは動的2Dピクセル環境をナビゲートできる。
論文 参考訳(メタデータ) (2020-07-06T14:32:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。