論文の概要: Self-Supervised Z-Slice Augmentation for 3D Bio-Imaging via Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2503.04843v2
- Date: Mon, 17 Mar 2025 21:52:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:12:56.068501
- Title: Self-Supervised Z-Slice Augmentation for 3D Bio-Imaging via Knowledge Distillation
- Title(参考訳): 知識蒸留による3次元バイオイメージングのための自己監督型Zスライス増強
- Authors: Alessandro Pasqui, Sajjad Mahdavi, Benoit Vianay, Alexandra Colin, Alex McDougall, Rémi Dumollard, Yekaterina A. Miroshnikova, Elsa Labrune, Hervé Turlier,
- Abstract要約: ZAugNetは、生物画像のz分解能を高めるための高速で正確で自己教師型のディープラーニング手法である。
連続スライス間の非線形距離を実行することで、ZAugNetは各イテレーションで分解能を効果的に倍にする。
ZAugNet+は任意の距離で連続的な予測を可能にする拡張版である。
- 参考スコア(独自算出の注目度): 65.46249968484794
- License:
- Abstract: Three-dimensional biological microscopy has significantly advanced our understanding of complex biological structures. However, limitations due to microscopy techniques, sample properties or phototoxicity often result in poor z-resolution, hindering accurate cellular measurements. Here, we introduce ZAugNet, a fast, accurate, and self-supervised deep learning method for enhancing z-resolution in biological images. By performing nonlinear interpolation between consecutive slices, ZAugNet effectively doubles resolution with each iteration. Compared on several microscopy modalities and biological objects, it outperforms competing methods on most metrics. Our method leverages a generative adversarial network (GAN) architecture combined with knowledge distillation to maximize prediction speed without compromising accuracy. We also developed ZAugNet+, an extended version enabling continuous interpolation at arbitrary distances, making it particularly useful for datasets with nonuniform slice spacing. Both ZAugNet and ZAugNet+ provide high-performance, scalable z-slice augmentation solutions for large-scale 3D imaging. They are available as open-source frameworks in PyTorch, with an intuitive Colab notebook interface for easy access by the scientific community.
- Abstract(参考訳): 三次元生体顕微鏡は複雑な生体構造の理解を著しく進歩させてきた。
しかし、顕微鏡技術、サンプル特性、光毒性による制限は、しばしばz分解能が悪く、正確な細胞測定を妨げる。
本稿では,生物画像のz分解能を高めるための高速かつ高精度かつ自己教師型深層学習手法であるZAugNetを紹介する。
連続スライス間の非線形補間を行うことで、ZAugNetは各イテレーションで分解能を効果的に倍増させる。
いくつかの顕微鏡法や生物学的対象と比較すると、ほとんどの指標において競合する手法よりも優れている。
提案手法は,GANアーキテクチャと知識蒸留を組み合わせることで,精度を損なうことなく予測速度を最大化する。
また、任意の距離で連続的な補間を可能にする拡張バージョンであるZAugNet+を開発し、不均一なスライス間隔を持つデータセットに特に有用である。
ZAugNetとZAugNet+はどちらも、大規模3Dイメージングのための高性能でスケーラブルなzスライス拡張ソリューションを提供する。
それらはPyTorchのオープンソースフレームワークとして利用可能で、科学コミュニティが簡単にアクセスできる、直感的なColabノートブックインターフェースを備えている。
関連論文リスト
- Enhancing Retinal Vascular Structure Segmentation in Images With a Novel
Design Two-Path Interactive Fusion Module Model [6.392575673488379]
網膜血管セグメンテーションの精度を高めるために設計されたSwin-Res-Netについて紹介する。
Swin-Res-Netは、パーティショニングに変位のあるシフトウィンドウを使用するSwin Transformerを使用している。
提案したアーキテクチャは,他の公開されたモデルに適合するか,あるいは超越するかという,優れた結果をもたらす。
論文 参考訳(メタデータ) (2024-03-03T01:36:11Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
我々はLoGoNetと呼ばれる新しいニューラルネットワークアーキテクチャを導入する。
LoGoNetは、LKA(Large Kernel Attention)とデュアルエンコーディング戦略を利用して、U字型アーキテクチャに新しい特徴抽出器を統合する。
大規模ラベル付きデータセットの欠如を補うために,3次元画像に適した新しいSSL方式を提案する。
論文 参考訳(メタデータ) (2024-02-09T05:06:58Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - NexToU: Efficient Topology-Aware U-Net for Medical Image Segmentation [3.8336080345323227]
CNNとTransformerの派生型は、主要な医療画像セグメンテーションバックボーンとして登場した。
医用画像分割のための新しいハイブリッドアーキテクチャであるNexToUを提案する。
我々の手法は、他の最先端(SOTA)アーキテクチャよりも一貫して優れています。
論文 参考訳(メタデータ) (2023-05-25T10:18:57Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - DVNet: A Memory-Efficient Three-Dimensional CNN for Large-Scale
Neurovascular Reconstruction [1.9199289015460215]
画素単位のセマンティックセマンティックセグメンテーションのための,完全畳み込み,深層化,密結合型エンコーダデコーダを提案する。
提案ネットワークは,オープンソースベンチマークに適用したセマンティックセグメンテーション問題に対して,優れた性能を提供する。
論文 参考訳(メタデータ) (2020-02-04T22:39:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。