HiNoVa: A Novel Open-Set Detection Method for Automating RF Device
Authentication
- URL: http://arxiv.org/abs/2305.09594v1
- Date: Tue, 16 May 2023 16:47:02 GMT
- Title: HiNoVa: A Novel Open-Set Detection Method for Automating RF Device
Authentication
- Authors: Luke Puppo, Weng-Keen Wong, Bechir Hamdaoui, Abdurrahman Elmaghbub
- Abstract summary: We introduce a novel open-set detection approach based on the patterns of the hidden state values within a Convolutional Neural Network (CNN) Long Short-Term Memory (LSTM) model.
Our approach greatly improves the Area Under the Precision-Recall Curve on LoRa, Wireless-WiFi, and Wired-WiFi datasets.
- Score: 9.571774189070531
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: New capabilities in wireless network security have been enabled by deep
learning, which leverages patterns in radio frequency (RF) data to identify and
authenticate devices. Open-set detection is an area of deep learning that
identifies samples captured from new devices during deployment that were not
part of the training set. Past work in open-set detection has mostly been
applied to independent and identically distributed data such as images. In
contrast, RF signal data present a unique set of challenges as the data forms a
time series with non-linear time dependencies among the samples. We introduce a
novel open-set detection approach based on the patterns of the hidden state
values within a Convolutional Neural Network (CNN) Long Short-Term Memory
(LSTM) model. Our approach greatly improves the Area Under the Precision-Recall
Curve on LoRa, Wireless-WiFi, and Wired-WiFi datasets, and hence, can be used
successfully to monitor and control unauthorized network access of wireless
devices.
Related papers
- Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder.
Our approach is grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks.
The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoencoders.
arXiv Detail & Related papers (2024-11-05T07:01:15Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Self-Supervised RF Signal Representation Learning for NextG Signal
Classification with Deep Learning [5.624291722263331]
Self-supervised learning enables the learning of useful representations from Radio Frequency (RF) signals themselves.
We show that the sample efficiency (the number of labeled samples required to achieve a certain accuracy performance) of AMR can be significantly increased by learning signal representations with self-supervised learning.
arXiv Detail & Related papers (2022-07-07T02:07:03Z) - Deep Federated Anomaly Detection for Multivariate Time Series Data [93.08977495974978]
We present a Federated Exemplar-based Deep Neural Network (Fed-ExDNN) to conduct anomaly detection for multivariate time series data on different edge devices.
We show that ExDNN and Fed-ExDNN can outperform state-of-the-art anomaly detection algorithms and federated learning techniques.
arXiv Detail & Related papers (2022-05-09T05:06:58Z) - Comprehensive RF Dataset Collection and Release: A Deep Learning-Based
Device Fingerprinting Use Case [10.698553177585973]
We present and release a large-scale RF fingerprinting dataset, collected from 25 different LoRa-enabled IoT transmitting devices using USRP B210 receivers.
Our dataset consists of a large number of SigMF-compliant binary files representing the I/Q time-domain samples and their corresponding FFT-based files of LoRa transmissions.
arXiv Detail & Related papers (2022-01-06T19:07:57Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - From One to Many: A Deep Learning Coincident Gravitational-Wave Search [58.720142291102135]
We construct a two-detector search for gravitational waves from binary black hole mergers using neural networks trained on non-spinning binary black hole data from a single detector.
We find that none of these simple two-detector networks are capable of improving the sensitivity over applying networks individually to the data from the detectors.
arXiv Detail & Related papers (2021-08-24T13:25:02Z) - A Photonic-Circuits-Inspired Compact Network: Toward Real-Time Wireless
Signal Classification at the Edge [3.841495731646297]
Large size of machine learning models can make them difficult to implement on edge devices for latency-sensitive downstream tasks.
In wireless communication systems, ML data processing at a sub-millisecond scale will enable real-time network monitoring.
We propose a novel compact deep network that consists of a photonic-hardware-inspired recurrent neural network model.
arXiv Detail & Related papers (2021-06-25T19:55:41Z) - Device Authentication Codes based on RF Fingerprinting using Deep
Learning [2.980018103007841]
Device Authentication Code (DAC) is a novel method for authenticating IoT devices with wireless interface by exploiting their radio frequency (RF) signatures.
We show that DAC is able to prevent device impersonation by extracting salient features that are unique to any wireless device of interest.
arXiv Detail & Related papers (2020-04-19T01:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.