Device Authentication Codes based on RF Fingerprinting using Deep
Learning
- URL: http://arxiv.org/abs/2004.08742v1
- Date: Sun, 19 Apr 2020 01:50:29 GMT
- Title: Device Authentication Codes based on RF Fingerprinting using Deep
Learning
- Authors: Joshua Bassey, Xiangfang Li, Lijun Qian
- Abstract summary: Device Authentication Code (DAC) is a novel method for authenticating IoT devices with wireless interface by exploiting their radio frequency (RF) signatures.
We show that DAC is able to prevent device impersonation by extracting salient features that are unique to any wireless device of interest.
- Score: 2.980018103007841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose Device Authentication Code (DAC), a novel method
for authenticating IoT devices with wireless interface by exploiting their
radio frequency (RF) signatures. The proposed DAC is based on RF
fingerprinting, information theoretic method, feature learning, and
discriminatory power of deep learning. Specifically, an autoencoder is used to
automatically extract features from the RF traces, and the reconstruction error
is used as the DAC and this DAC is unique to the device and the particular
message of interest. Then Kolmogorov-Smirnov (K-S) test is used to match the
distribution of the reconstruction error generated by the autoencoder and the
received message, and the result will determine whether the device of interest
belongs to an authorized user. We validate this concept on two experimentally
collected RF traces from six ZigBee and five universal software defined radio
peripheral (USRP) devices, respectively. The traces span a range of Signalto-
Noise Ratio by varying locations and mobility of the devices and channel
interference and noise to ensure robustness of the model. Experimental results
demonstrate that DAC is able to prevent device impersonation by extracting
salient features that are unique to any wireless device of interest and can be
used to identify RF devices. Furthermore, the proposed method does not need the
RF traces of the intruder during model training yet be able to identify devices
not seen during training, which makes it practical.
Related papers
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization [60.899082019130766]
We introduce a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization.
FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions.
PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN.
arXiv Detail & Related papers (2024-07-23T15:07:52Z) - Erasing Radio Frequency Fingerprints via Active Adversarial Perturbation [19.88283575742985]
We consider a common RF fingerprinting scenario, where machine learning models are trained from pilot signal data for identification.
A novel adversarial attack solution is designed to generate proper perturbations, whereby the pilot signal can hide the hardware feature and misclassify the model.
Extensive experiment results demonstrate that the RF fingerprints can be effectively erased to protect the user privacy.
arXiv Detail & Related papers (2024-06-11T15:16:05Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - HiNoVa: A Novel Open-Set Detection Method for Automating RF Device
Authentication [9.571774189070531]
We introduce a novel open-set detection approach based on the patterns of the hidden state values within a Convolutional Neural Network (CNN) Long Short-Term Memory (LSTM) model.
Our approach greatly improves the Area Under the Precision-Recall Curve on LoRa, Wireless-WiFi, and Wired-WiFi datasets.
arXiv Detail & Related papers (2023-05-16T16:47:02Z) - SignCRF: Scalable Channel-agnostic Data-driven Radio Authentication
System [17.391164797113134]
Radio Frequency Fingerprinting through Deep Learning (RFFDL) is a data-driven IoT authentication technique.
The proposed SignCRF is a scalable, channel-agnostic, data-driven radio authentication platform.
We demonstrate that SignCRF significantly improves the RFFDL performance by achieving as high as 5x and 8x improvement in correct authentication of WiFi and LoRa devices.
arXiv Detail & Related papers (2023-03-21T21:11:02Z) - One-shot Generative Distribution Matching for Augmented RF-based UAV Identification [0.0]
This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments.
The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective.
One-shot generative methods for augmenting transformed RF signals offer a significant improvement in UAV identification.
arXiv Detail & Related papers (2023-01-20T02:35:43Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - Comprehensive RF Dataset Collection and Release: A Deep Learning-Based
Device Fingerprinting Use Case [10.698553177585973]
We present and release a large-scale RF fingerprinting dataset, collected from 25 different LoRa-enabled IoT transmitting devices using USRP B210 receivers.
Our dataset consists of a large number of SigMF-compliant binary files representing the I/Q time-domain samples and their corresponding FFT-based files of LoRa transmissions.
arXiv Detail & Related papers (2022-01-06T19:07:57Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
Radio-frequency fingerprints(RFFs) are promising solutions for realizing low-cost physical layer authentication.
Machine learning-based methods have been proposed for RFF extraction and discrimination.
We propose a new end-to-end deep learning framework for extracting RFFs from raw received signals.
arXiv Detail & Related papers (2021-08-10T03:59:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.