Quantum Machine Learning for Malware Classification
- URL: http://arxiv.org/abs/2305.09674v3
- Date: Wed, 7 Jun 2023 07:56:11 GMT
- Title: Quantum Machine Learning for Malware Classification
- Authors: Gr\'egoire Barru\'e and Tony Quertier
- Abstract summary: In a context of malicious software detection, machine learning is widely used to generalize to new malware.
It has been demonstrated that ML models can be fooled or may have generalization problems on malware that has never been seen.
We implement two models of Quantum Machine Learning algorithms, and we compare them to classical models for the classification of a dataset composed of malicious and benign executable files.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a context of malicious software detection, machine learning (ML) is widely
used to generalize to new malware. However, it has been demonstrated that ML
models can be fooled or may have generalization problems on malware that has
never been seen. We investigate the possible benefits of quantum algorithms for
classification tasks. We implement two models of Quantum Machine Learning
algorithms, and we compare them to classical models for the classification of a
dataset composed of malicious and benign executable files. We try to optimize
our algorithms based on methods found in the literature, and analyze our
results in an exploratory way, to identify the most interesting directions to
explore for the future.
Related papers
- A Survey of Malware Detection Using Deep Learning [6.349503549199403]
This paper investigates advances in malware detection on Windows, iOS, Android, and Linux using deep learning (DL)
We discuss the issues and the challenges in malware detection using DL classifiers.
We examine eight popular DL approaches on various datasets.
arXiv Detail & Related papers (2024-07-27T02:49:55Z) - Quantum Data Encoding: A Comparative Analysis of Classical-to-Quantum
Mapping Techniques and Their Impact on Machine Learning Accuracy [0.0]
This research explores the integration of quantum data embedding techniques into classical machine learning (ML) algorithms.
Our findings reveal that quantum data embedding contributes to improved classification accuracy and F1 scores.
arXiv Detail & Related papers (2023-11-17T08:00:08Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - When a RF Beats a CNN and GRU, Together -- A Comparison of Deep Learning
and Classical Machine Learning Approaches for Encrypted Malware Traffic
Classification [4.495583520377878]
We show that in the case of malicious traffic classification, state-of-the-art DL-based solutions do not necessarily outperform the classical ML-based ones.
We exemplify this finding using two well-known datasets for a varied set of tasks, such as: malware detection, malware family classification, detection of zero-day attacks, and classification of an iteratively growing dataset.
arXiv Detail & Related papers (2022-06-16T08:59:53Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - Quantum Machine Learning For Classical Data [0.0]
We study the intersection of quantum computing and supervised machine learning algorithms.
In particular, we investigate what extent quantum computers can be used to accelerate supervised machine learning algorithms.
arXiv Detail & Related papers (2021-05-08T12:11:44Z) - Deep Learning and Traffic Classification: Lessons learned from a
commercial-grade dataset with hundreds of encrypted and zero-day applications [72.02908263225919]
We share our experience on a commercial-grade DL traffic classification engine.
We identify known applications from encrypted traffic, as well as unknown zero-day applications.
We propose a novel technique, tailored for DL models, that is significantly more accurate and light-weight than the state of the art.
arXiv Detail & Related papers (2021-04-07T15:21:22Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck.
By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning.
arXiv Detail & Related papers (2020-09-07T16:47:30Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - Why an Android App is Classified as Malware? Towards Malware
Classification Interpretation [34.59397128785141]
We propose a novel and interpretable ML-based approach (named XMal) to classify malware with high accuracy and explain the classification result.
XMal hinges multi-layer perceptron (MLP) and attention mechanism, and also pinpoints the key features most related to the classification result.
Our study peeks into the interpretable ML through the research of Android malware detection and analysis.
arXiv Detail & Related papers (2020-04-24T03:05:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.