What In-Context Learning "Learns" In-Context: Disentangling Task
Recognition and Task Learning
- URL: http://arxiv.org/abs/2305.09731v1
- Date: Tue, 16 May 2023 18:05:19 GMT
- Title: What In-Context Learning "Learns" In-Context: Disentangling Task
Recognition and Task Learning
- Authors: Jane Pan, Tianyu Gao, Howard Chen, Danqi Chen
- Abstract summary: Large language models (LLMs) exploit in-context learning (ICL) to solve tasks with only a few demonstrations.
We characterize two ways through which ICL leverages demonstrations.
We show that models can achieve non-trivial performance with only TR, and TR does not further improve with larger models or more demonstrations.
- Score: 24.395288160951118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) exploit in-context learning (ICL) to solve tasks
with only a few demonstrations, but its mechanisms are not yet well-understood.
Some works suggest that LLMs only recall already learned concepts from
pre-training, while others hint that ICL performs implicit learning over
demonstrations. We characterize two ways through which ICL leverages
demonstrations. Task recognition (TR) captures the extent to which LLMs can
recognize a task through demonstrations -- even without ground-truth labels --
and apply their pre-trained priors, whereas task learning (TL) is the ability
to capture new input-label mappings unseen in pre-training. Using a wide range
of classification datasets and three LLM families (GPT-3, LLaMA and OPT), we
design controlled experiments to disentangle the roles of TR and TL in ICL. We
show that (1) models can achieve non-trivial performance with only TR, and TR
does not further improve with larger models or more demonstrations; (2) LLMs
acquire TL as the model scales, and TL's performance consistently improves with
more demonstrations in context. Our findings unravel two different forces
behind ICL and we advocate for discriminating them in future ICL research due
to their distinct nature.
Related papers
- What Do Language Models Learn in Context? The Structured Task Hypothesis [89.65045443150889]
Large language models (LLMs) learn a novel task from in-context examples presented in a demonstration, termed in-context learning (ICL)
One popular hypothesis explains ICL by task selection.
Another popular hypothesis is that ICL is a form of meta-learning, i.e., the models learn a learning algorithm at pre-training time and apply it to the demonstration.
arXiv Detail & Related papers (2024-06-06T16:15:34Z) - Does In-Context Learning Really Learn? Rethinking How Large Language Models Respond and Solve Tasks via In-Context Learning [41.606494950216764]
In-context Learning (ICL) has emerged as a powerful capability alongside the development of scaled-up large language models (LLMs)
This paper decomposes the overall performance of ICL into three dimensions, label space, format, and discrimination.
We show that ICL exhibits significant efficacy in regulating the label space and format, which helps LLMs respond to desired label words.
arXiv Detail & Related papers (2024-04-11T08:20:10Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - Rectifying Demonstration Shortcut in In-Context Learning [15.08431909212102]
Large language models (LLMs) are able to solve various tasks with only a few demonstrations utilizing their in-context learning (ICL) abilities.
LLMs often rely on their pre-trained semantic priors of demonstrations rather than on the input-label relationships to proceed with ICL prediction.
arXiv Detail & Related papers (2024-03-14T15:30:14Z) - VILA: On Pre-training for Visual Language Models [74.08039416548209]
We study the design options for VLM pre-training through step-by-step controllable comparisons.
We build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models.
arXiv Detail & Related papers (2023-12-12T18:58:18Z) - Take One Step at a Time to Know Incremental Utility of Demonstration: An Analysis on Reranking for Few-Shot In-Context Learning [23.932500424117244]
In-Context Learning (ICL) is an emergent capability of Large Language Models (LLMs)
Previous studies have shown that using LLMs' outputs as labels is effective in training models to select demonstrations.
This paper presents an analysis on different utility functions by focusing on LLMs' output probability given ground-truth output.
arXiv Detail & Related papers (2023-11-16T07:03:54Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Ambiguity-Aware In-Context Learning with Large Language Models [27.20414960164616]
In-context learning (ICL) i.e. showing LLMs task-specific demonstrations has led to downstream gains with no task-specific fine-tuning required.
This study investigates how to select good demonstrations for ICL.
We find that it is beneficial to not only choose semantically similar ICL demonstrations but also to choose those that help resolve the inherent label ambiguity surrounding the test example.
arXiv Detail & Related papers (2023-09-14T17:48:34Z) - Scaling In-Context Demonstrations with Structured Attention [75.41845145597875]
We propose a better architectural design for in-context learning.
Structured Attention for In-Context Learning replaces the full-attention by a structured attention mechanism.
We show that SAICL achieves comparable or better performance than full attention while obtaining up to 3.4x inference speed-up.
arXiv Detail & Related papers (2023-07-05T23:26:01Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.