The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition
- URL: http://arxiv.org/abs/2403.17125v1
- Date: Mon, 25 Mar 2024 19:07:32 GMT
- Title: The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition
- Authors: Georgios Chochlakis, Alexandros Potamianos, Kristina Lerman, Shrikanth Narayanan,
- Abstract summary: In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
- Score: 74.04775677110179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM) without updating the models' parameters, in contrast to the traditional gradient-based finetuning. The promise of ICL is that the LLM can adapt to perform the present task at a competitive or state-of-the-art level at a fraction of the cost. The ability of LLMs to perform tasks in this few-shot manner relies on their background knowledge of the task (or task priors). However, recent work has found that, unlike traditional learning, LLMs are unable to fully integrate information from demonstrations that contrast task priors. This can lead to performance saturation at suboptimal levels, especially for subjective tasks such as emotion recognition, where the mapping from text to emotions can differ widely due to variability in human annotations. In this work, we design experiments and propose measurements to explicitly quantify the consistency of proxies of LLM priors and their pull on the posteriors. We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions. We also find that the larger the model, the stronger these effects become. Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain and when interpreting ICL results.
Related papers
- Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) has become the primary method for performing natural language tasks with Large Language Models (LLMs)
In this work, we examine whether this is the result of the aggregation used in corresponding datasets, where trying to combine low-agreement, disparate annotations might lead to annotation artifacts that create detrimental noise in the prompt.
Our results indicate that aggregation is a confounding factor in the modeling of subjective tasks, and advocate focusing on modeling individuals instead.
arXiv Detail & Related papers (2024-10-17T17:16:00Z) - Large Language Models are Biased Reinforcement Learners [0.0]
We show that large language models (LLMs) exhibit behavioral signatures of a relative value bias.
Computational cognitive modeling reveals that LLM behavior is well-described by a simple RL algorithm.
arXiv Detail & Related papers (2024-05-19T01:43:52Z) - Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction [62.409807640887834]
Chinese Grammatical Error Correction (CGEC) aims to correct all potential grammatical errors in the input sentences.
LLMs' performance as correctors on CGEC remains unsatisfactory due to its challenging task focus.
We rethink the roles of LLMs in the CGEC task so that they can be better utilized and explored in CGEC.
arXiv Detail & Related papers (2024-02-18T01:40:34Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
We propose a framework to teach Large Language Models (LLMs) to generate explainable stock predictions.
A reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations.
Our framework can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient.
arXiv Detail & Related papers (2024-02-06T03:18:58Z) - When does In-context Learning Fall Short and Why? A Study on
Specification-Heavy Tasks [54.71034943526973]
In-context learning (ICL) has become the default method for using large language models (LLMs)
We find that ICL falls short of handling specification-heavy tasks, which are tasks with complicated and extensive task specifications.
We identify three primary reasons: inability to specifically understand context, misalignment in task schema comprehension with humans, and inadequate long-text understanding ability.
arXiv Detail & Related papers (2023-11-15T14:26:30Z) - Customising General Large Language Models for Specialised Emotion
Recognition Tasks [24.822342337306363]
We investigate how large language models (LLMs) perform in linguistic emotion recognition.
Specifically, we exemplify a publicly available and widely used LLM -- Chat General Language Model.
We customise it for our target by using two different modal adaptation techniques, i.e., deep prompt tuning and low-rank adaptation.
The experimental results show that the adapted LLM can easily outperform other state-of-the-art but specialised deep models.
arXiv Detail & Related papers (2023-10-22T08:09:13Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance.
Our approach involves adapting the previous prompt-based representation method for autoregressive models.
By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity tasks.
arXiv Detail & Related papers (2023-07-31T13:26:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.