Mitigating Group Bias in Federated Learning: Beyond Local Fairness
- URL: http://arxiv.org/abs/2305.09931v1
- Date: Wed, 17 May 2023 03:28:19 GMT
- Title: Mitigating Group Bias in Federated Learning: Beyond Local Fairness
- Authors: Ganghua Wang, Ali Payani, Myungjin Lee, Ramana Kompella
- Abstract summary: We study the relationship between global model fairness and local model fairness.
We propose a globally fair training algorithm that directly minimizes the penalized empirical loss.
- Score: 0.6882042556551609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The issue of group fairness in machine learning models, where certain
sub-populations or groups are favored over others, has been recognized for some
time. While many mitigation strategies have been proposed in centralized
learning, many of these methods are not directly applicable in federated
learning, where data is privately stored on multiple clients. To address this,
many proposals try to mitigate bias at the level of clients before aggregation,
which we call locally fair training. However, the effectiveness of these
approaches is not well understood. In this work, we investigate the theoretical
foundation of locally fair training by studying the relationship between global
model fairness and local model fairness. Additionally, we prove that for a
broad class of fairness metrics, the global model's fairness can be obtained
using only summary statistics from local clients. Based on that, we propose a
globally fair training algorithm that directly minimizes the penalized
empirical loss. Real-data experiments demonstrate the promising performance of
our proposed approach for enhancing fairness while retaining high accuracy
compared to locally fair training methods.
Related papers
- WassFFed: Wasserstein Fair Federated Learning [31.135784690264888]
Federated Learning (FL) employs a training approach to address scenarios where users' data cannot be shared across clients.
We propose a Wasserstein Fair Federated Learning framework, namely WassFFed.
arXiv Detail & Related papers (2024-11-11T11:26:22Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREE is a post-processing algorithm developed specifically for distribution-free fair learning in decentralized settings with small samples.
We provide rigorous theoretical guarantees for both fairness and accuracy, and our experimental results further provide robust empirical validation for our proposed method.
arXiv Detail & Related papers (2024-02-25T17:37:53Z) - Exploring Vacant Classes in Label-Skewed Federated Learning [113.65301899666645]
Label skews, characterized by disparities in local label distribution across clients, pose a significant challenge in federated learning.
This paper introduces FedVLS, a novel approach to label-skewed federated learning that integrates vacant-class distillation and logit suppression simultaneously.
arXiv Detail & Related papers (2024-01-04T16:06:31Z) - Multi-dimensional Fair Federated Learning [25.07463977553212]
Federated learning (FL) has emerged as a promising collaborative and secure paradigm for training a model from decentralized data.
Group fairness and client fairness are two dimensions of fairness that are important for FL.
We propose a method, called mFairFL, to achieve group fairness and client fairness simultaneously.
arXiv Detail & Related papers (2023-12-09T11:37:30Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - FAIR-FATE: Fair Federated Learning with Momentum [0.41998444721319217]
We propose a novel FAIR FederATEd Learning algorithm that aims to achieve group fairness while maintaining high utility.
To the best of our knowledge, this is the first approach in machine learning that aims to achieve fairness using a fair Momentum estimate.
Experimental results on real-world datasets demonstrate that FAIR-FATE outperforms state-of-the-art fair Federated Learning algorithms.
arXiv Detail & Related papers (2022-09-27T20:33:38Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
We propose a novel fairness learning method termed CUrvature MAtching (CUMA)
CUMA achieves robust fairness generalizable to unseen domains with unknown distributional shifts.
We evaluate our method on three popular fairness datasets.
arXiv Detail & Related papers (2022-07-04T02:37:50Z) - Unified Group Fairness on Federated Learning [22.143427873780404]
Federated learning (FL) has emerged as an important machine learning paradigm where a global model is trained based on private data from distributed clients.
Recent researches focus on achieving fairness among clients, but they ignore the fairness towards different groups formed by sensitive attribute(s) (e.g., gender and/or race)
We propose a novel FL algorithm, named Group Distributionally Robust Federated Averaging (G-DRFA), which mitigates the distribution shift across groups with theoretical analysis of convergence rate.
arXiv Detail & Related papers (2021-11-09T08:21:38Z) - FairFed: Enabling Group Fairness in Federated Learning [22.913999279079878]
Federated learning has been viewed as a promising solution for learning machine learning models among multiple parties.
We propose FairFed, a novel algorithm to enhance group fairness via a fairness-aware aggregation method.
Our proposed method outperforms the state-of-the-art fair federated learning frameworks under a high heterogeneous sensitive attribute distribution.
arXiv Detail & Related papers (2021-10-02T17:55:20Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
We evaluate long-tail learning methods for tweet sentiment and occupation classification.
We extend a margin-loss based approach with methods to enforce fairness.
arXiv Detail & Related papers (2021-09-21T22:16:30Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.