Software Fairness Dilemma: Is Bias Mitigation a Zero-Sum Game?
- URL: http://arxiv.org/abs/2508.03323v1
- Date: Tue, 05 Aug 2025 11:05:20 GMT
- Title: Software Fairness Dilemma: Is Bias Mitigation a Zero-Sum Game?
- Authors: Zhenpeng Chen, Xinyue Li, Jie M. Zhang, Weisong Sun, Ying Xiao, Tianlin Li, Yiling Lou, Yang Liu,
- Abstract summary: Fairness is a critical requirement for Machine Learning (ML) software.<n>Previous research has identified a leveling-down effect in bias mitigation for computer vision and natural language processing tasks.
- Score: 20.47795550485293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness is a critical requirement for Machine Learning (ML) software, driving the development of numerous bias mitigation methods. Previous research has identified a leveling-down effect in bias mitigation for computer vision and natural language processing tasks, where fairness is achieved by lowering performance for all groups without benefiting the unprivileged group. However, it remains unclear whether this effect applies to bias mitigation for tabular data tasks, a key area in fairness research with significant real-world applications. This study evaluates eight bias mitigation methods for tabular data, including both widely used and cutting-edge approaches, across 44 tasks using five real-world datasets and four common ML models. Contrary to earlier findings, our results show that these methods operate in a zero-sum fashion, where improvements for unprivileged groups are related to reduced benefits for traditionally privileged groups. However, previous research indicates that the perception of a zero-sum trade-off might complicate the broader adoption of fairness policies. To explore alternatives, we investigate an approach that applies the state-of-the-art bias mitigation method solely to unprivileged groups, showing potential to enhance benefits of unprivileged groups without negatively affecting privileged groups or overall ML performance. Our study highlights potential pathways for achieving fairness improvements without zero-sum trade-offs, which could help advance the adoption of bias mitigation methods.
Related papers
- Fairness Mediator: Neutralize Stereotype Associations to Mitigate Bias in Large Language Models [66.5536396328527]
LLMs inadvertently absorb spurious correlations from training data, leading to stereotype associations between biased concepts and specific social groups.<n>We propose Fairness Mediator (FairMed), a bias mitigation framework that neutralizes stereotype associations.<n>Our framework comprises two main components: a stereotype association prober and an adversarial debiasing neutralizer.
arXiv Detail & Related papers (2025-04-10T14:23:06Z) - Towards Harmless Rawlsian Fairness Regardless of Demographic Prior [57.30787578956235]
We explore the potential for achieving fairness without compromising its utility when no prior demographics are provided to the training set.
We propose a simple but effective method named VFair to minimize the variance of training losses inside the optimal set of empirical losses.
arXiv Detail & Related papers (2024-11-04T12:40:34Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.<n>FAST surpasses state-of-the-art baselines with superior debiasing performance.<n>This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Fairpriori: Improving Biased Subgroup Discovery for Deep Neural Network Fairness [21.439820064223877]
This paper introduces Fairpriori, a novel biased subgroup discovery method.
It incorporates the frequent itemset generation algorithm to facilitate effective and efficient investigation of intersectional bias.
Fairpriori demonstrates superior effectiveness and efficiency when identifying intersectional bias.
arXiv Detail & Related papers (2024-06-25T00:15:13Z) - AIM: Attributing, Interpreting, Mitigating Data Unfairness [40.351282126410545]
Existing fair machine learning (FairML) research has predominantly focused on mitigating discriminative bias in the model prediction.
We investigate a novel research problem: discovering samples that reflect biases/prejudices from the training data.
We propose practical algorithms for measuring and countering sample bias.
arXiv Detail & Related papers (2024-06-13T05:21:10Z) - Mitigating Group Bias in Federated Learning: Beyond Local Fairness [0.6882042556551609]
We study the relationship between global model fairness and local model fairness.
We propose a globally fair training algorithm that directly minimizes the penalized empirical loss.
arXiv Detail & Related papers (2023-05-17T03:28:19Z) - On Comparing Fair Classifiers under Data Bias [42.43344286660331]
We study the effect of varying data biases on the accuracy and fairness of fair classifiers.
Our experiments show how to integrate a measure of data bias risk in the existing fairness dashboards for real-world deployments.
arXiv Detail & Related papers (2023-02-12T13:04:46Z) - Cascaded Debiasing: Studying the Cumulative Effect of Multiple
Fairness-Enhancing Interventions [48.98659895355356]
This paper investigates the cumulative effect of multiple fairness enhancing interventions at different stages of the machine learning (ML) pipeline.
Applying multiple interventions results in better fairness and lower utility than individual interventions on aggregate.
On the downside, fairness-enhancing interventions can negatively impact different population groups, especially the privileged group.
arXiv Detail & Related papers (2022-02-08T09:20:58Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
We develop a fair representation learning algorithm which is able to map individuals belonging to different groups in a single group.
We show experimentally that our methodology is competitive with other fair representation learning algorithms.
arXiv Detail & Related papers (2022-01-17T10:49:49Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
We evaluate long-tail learning methods for tweet sentiment and occupation classification.
We extend a margin-loss based approach with methods to enforce fairness.
arXiv Detail & Related papers (2021-09-21T22:16:30Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
We propose a simple but effective debiasing technique in an unsupervised manner.
We perform clustering on the feature embedding space and identify pseudoattributes by taking advantage of the clustering results.
We then employ a novel cluster-based reweighting scheme for learning debiased representation.
arXiv Detail & Related papers (2021-08-06T05:20:46Z) - Bias-Tolerant Fair Classification [20.973916494320246]
label bias and selection bias are two reasons in data that will hinder the fairness of machine-learning outcomes.
We propose a Bias-TolerantFAirRegularizedLoss (B-FARL) which tries to regain the benefits using data affected by label bias and selection bias.
B-FARL takes the biased data as input, calls a model that approximates the one trained with fair but latent data, and thus prevents discrimination without constraints required.
arXiv Detail & Related papers (2021-07-07T13:31:38Z) - Recovering from Biased Data: Can Fairness Constraints Improve Accuracy? [11.435833538081557]
Empirical Risk Minimization (ERM) may produce a classifier that not only is biased but also has suboptimal accuracy on the true data distribution.
We examine the ability of fairness-constrained ERM to correct this problem.
We also consider other recovery methods including reweighting the training data, Equalized Odds, and Demographic Parity.
arXiv Detail & Related papers (2019-12-02T22:00:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.