''Fifty Shades of Bias'': Normative Ratings of Gender Bias in GPT
Generated English Text
- URL: http://arxiv.org/abs/2310.17428v1
- Date: Thu, 26 Oct 2023 14:34:06 GMT
- Title: ''Fifty Shades of Bias'': Normative Ratings of Gender Bias in GPT
Generated English Text
- Authors: Rishav Hada, Agrima Seth, Harshita Diddee, Kalika Bali
- Abstract summary: Language serves as a powerful tool for the manifestation of societal belief systems.
Gender bias is one of the most pervasive biases in our society.
We create the first dataset of GPT-generated English text with normative ratings of gender bias.
- Score: 11.085070600065801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language serves as a powerful tool for the manifestation of societal belief
systems. In doing so, it also perpetuates the prevalent biases in our society.
Gender bias is one of the most pervasive biases in our society and is seen in
online and offline discourses. With LLMs increasingly gaining human-like
fluency in text generation, gaining a nuanced understanding of the biases these
systems can generate is imperative. Prior work often treats gender bias as a
binary classification task. However, acknowledging that bias must be perceived
at a relative scale; we investigate the generation and consequent receptivity
of manual annotators to bias of varying degrees. Specifically, we create the
first dataset of GPT-generated English text with normative ratings of gender
bias. Ratings were obtained using Best--Worst Scaling -- an efficient
comparative annotation framework. Next, we systematically analyze the variation
of themes of gender biases in the observed ranking and show that
identity-attack is most closely related to gender bias. Finally, we show the
performance of existing automated models trained on related concepts on our
dataset.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Are Models Biased on Text without Gender-related Language? [14.931375031931386]
We introduce UnStereoEval (USE), a novel framework for investigating gender bias in stereotype-free scenarios.
USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations.
We find low fairness across all 28 tested models, suggesting that bias does not solely stem from the presence of gender-related words.
arXiv Detail & Related papers (2024-05-01T15:51:15Z) - Don't Overlook the Grammatical Gender: Bias Evaluation for Hindi-English
Machine Translation [0.0]
Existing evaluation benchmarks primarily focus on English as the source language of translation.
For source languages other than English, studies often employ gender-neutral sentences for bias evaluation.
We emphasise the significance of tailoring bias evaluation test sets to account for grammatical gender markers in the source language.
arXiv Detail & Related papers (2023-11-11T09:28:43Z) - Gender Inflected or Bias Inflicted: On Using Grammatical Gender Cues for
Bias Evaluation in Machine Translation [0.0]
We use Hindi as the source language and construct two sets of gender-specific sentences to evaluate different Hindi-English (HI-EN) NMT systems.
Our work highlights the importance of considering the nature of language when designing such extrinsic bias evaluation datasets.
arXiv Detail & Related papers (2023-11-07T07:09:59Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
Transgender and non-binary (TGNB) individuals disproportionately experience discrimination and exclusion from daily life.
We assess how the social reality surrounding experienced marginalization of TGNB persons contributes to and persists within Open Language Generation.
We introduce TANGO, a dataset of template-based real-world text curated from a TGNB-oriented community.
arXiv Detail & Related papers (2023-05-17T04:21:45Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
We investigate how seniority impacts the degree of gender bias exhibited in pretrained neural generation models.
Our results show that GPT-2 amplifies bias by considering women as junior and men as senior more often than the ground truth in both domains.
These results suggest that NLP applications built using GPT-2 may harm women in professional capacities.
arXiv Detail & Related papers (2022-05-19T20:05:02Z) - Gender Bias in Text: Labeled Datasets and Lexicons [0.30458514384586394]
There is a lack of gender bias datasets and lexicons for automating the detection of gender bias.
We provide labeled datasets and exhaustive lexicons by collecting, annotating, and augmenting relevant sentences.
The released datasets and lexicons span multiple bias subtypes including: Generic He, Generic She, Explicit Marking of Sex, and Gendered Neologisms.
arXiv Detail & Related papers (2022-01-21T12:44:51Z) - Gender Stereotype Reinforcement: Measuring the Gender Bias Conveyed by
Ranking Algorithms [68.85295025020942]
We propose the Gender Stereotype Reinforcement (GSR) measure, which quantifies the tendency of a Search Engines to support gender stereotypes.
GSR is the first specifically tailored measure for Information Retrieval, capable of quantifying representational harms.
arXiv Detail & Related papers (2020-09-02T20:45:04Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.