論文の概要: Object Re-Identification from Point Clouds
- arxiv url: http://arxiv.org/abs/2305.10210v3
- Date: Fri, 11 Aug 2023 20:09:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 19:51:22.593840
- Title: Object Re-Identification from Point Clouds
- Title(参考訳): 点雲からの物体再同定
- Authors: Benjamin Th\'erien, Chengjie Huang, Adrian Chow, Krzysztof Czarnecki
- Abstract要約: 我々は,物体ReIDを点雲から大規模に研究し,画像ReIDに対してその性能を確立する。
我々の知る限りでは、我々は実際の雲の観測から物体の再同定を初めて研究している。
- 参考スコア(独自算出の注目度): 3.6308236424346694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object re-identification (ReID) from images plays a critical role in
application domains of image retrieval (surveillance, retail analytics, etc.)
and multi-object tracking (autonomous driving, robotics, etc.). However,
systems that additionally or exclusively perceive the world from depth sensors
are becoming more commonplace without any corresponding methods for object
ReID. In this work, we fill the gap by providing the first large-scale study of
object ReID from point clouds and establishing its performance relative to
image ReID. To enable such a study, we create two large-scale ReID datasets
with paired image and LiDAR observations and propose a lightweight matching
head that can be concatenated to any set or sequence processing backbone (e.g.,
PointNet or ViT), creating a family of comparable object ReID networks for both
modalities. Run in Siamese style, our proposed point cloud ReID networks can
make thousands of pairwise comparisons in real-time ($10$ Hz). Our findings
demonstrate that their performance increases with higher sensor resolution and
approaches that of image ReID when observations are sufficiently dense. Our
strongest network trained at the largest scale achieves ReID accuracy exceeding
$90\%$ for rigid objects and $85\%$ for deformable objects (without any
explicit skeleton normalization). To our knowledge, we are the first to study
object re-identification from real point cloud observations.
- Abstract(参考訳): 画像からのオブジェクト再識別(ReID)は、画像検索(監視、小売分析など)や多目的追跡(自律運転、ロボット工学など)のアプリケーション領域において重要な役割を果たす。
しかし、深度センサから世界を知覚するシステムは、対応する対象reidの方法がなければ、より一般的になりつつある。
本研究では,点雲からのオブジェクトReIDの大規模研究を行い,画像ReIDに対してその性能を確立することにより,そのギャップを埋める。
このような研究を可能にするために、ペア画像とLiDAR観測を併用した2つの大規模ReIDデータセットを作成し、任意のセットやシーケンス処理バックボーン(PointNetやViTなど)に結合可能な軽量なマッチングヘッドを提案し、両方のモダリティに匹敵するオブジェクトReIDネットワークのファミリを作成する。
提案したポイントクラウド ReID ネットワークは,Siamese スタイルで実行することで,リアルタイム(10$ Hz) で数千のペア比較を行うことができる。
以上の結果より, センサの高分解能化と画像ReIDの高密度化による性能向上が示唆された。
最大規模でトレーニングされた最強のネットワークは、剛体オブジェクトに対して90\%$、変形可能なオブジェクトに対して85\%$というreid精度を達成します(明示的なスケルトン正規化は必要ありません)。
私たちの知る限りでは、現実の点雲観測から物体の再同定を研究するのは初めてです。
関連論文リスト
- Towards Global Localization using Multi-Modal Object-Instance Re-Identification [23.764646800085977]
マルチモーダルRGBと深度情報を統合した新しい再同定トランスフォーマアーキテクチャを提案する。
照明条件が異なったり散らかったりしたシーンにおけるReIDの改善を実演する。
また、正確なカメラのローカライゼーションを可能にするReIDベースのローカライゼーションフレームワークを開発し、異なる視点で識別を行う。
論文 参考訳(メタデータ) (2024-09-18T14:15:10Z) - PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
本稿では、データセットとネットワークフレームワークの両方の観点から、より難解な高分解能サルエントオブジェクト検出(HRSOD)について述べる。
HRSODデータセットの欠如を補うため、UHRSDと呼ばれる大規模高解像度の高分解能物体検出データセットを慎重に収集した。
すべての画像はピクセルレベルで微妙にアノテートされ、以前の低解像度のSODデータセットをはるかに上回っている。
論文 参考訳(メタデータ) (2024-08-02T09:31:21Z) - PoIFusion: Multi-Modal 3D Object Detection via Fusion at Points of Interest [65.48057241587398]
PoIFusionは、関心点(PoIs)におけるRGBイメージとLiDARポイントクラウドに関する情報を融合するフレームワークである。
提案手法は,各モダリティの視点を維持し,計算にやさしいプロジェクションと計算によってマルチモーダル特徴を得る。
我々はnuScenesとArgoverse2データセットについて広範囲に実験を行い、我々のアプローチを評価した。
論文 参考訳(メタデータ) (2024-03-14T09:28:12Z) - PointOBB: Learning Oriented Object Detection via Single Point
Supervision [55.88982271340328]
本稿では,オブジェクト指向物体検出のための最初の単一点ベース OBB 生成法である PointOBB を提案する。
PointOBBは、オリジナルビュー、リサイズビュー、ローテーション/フリップ(rot/flp)ビューの3つのユニークなビューの協調利用を通じて動作する。
DIOR-RとDOTA-v1.0データセットの実験結果は、PointOBBが有望な性能を達成することを示す。
論文 参考訳(メタデータ) (2023-11-23T15:51:50Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
本稿では、回転物体検出問題に対処するために、適応回転変換(ARC)モジュールを提案する。
ARCモジュールでは、コンボリューションカーネルが適応的に回転し、異なる画像に異なる向きのオブジェクト特徴を抽出する。
提案手法は,81.77%mAPのDOTAデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-03-14T11:53:12Z) - I2P-Rec: Recognizing Images on Large-scale Point Cloud Maps through
Bird's Eye View Projections [18.7557037030769]
位置認識は、完全な自律性を達成するための、自動運転車にとって重要な技術である。
クロスモーダルデータを同じモダリティに変換することで,I2P-Rec法を提案する。
トレーニングデータの小さなセットだけで、I2P-Recはポイントクラウドマップ上のモノクロ画像とステレオ画像のローカライズ時に、80%と90%でトップ1%のリコール率を達成する。
論文 参考訳(メタデータ) (2023-03-02T07:56:04Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Cross-Modality 3D Object Detection [63.29935886648709]
本稿では,3次元物体検出のための新しい2段階多モード融合ネットワークを提案する。
アーキテクチャ全体が2段階の融合を促進する。
KITTIデータセットを用いた実験により,提案したマルチステージ融合により,ネットワークがより良い表現を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-08-16T11:01:20Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
複数のオブジェクトを持つ複雑なシーンを生成するレイアウト・ツー・イメージ生成法を開発した。
本手法は,シーン内のオブジェクト間の空間的関係の表現を学習し,レイアウトの忠実度の向上につながる。
本稿では,Fr'echet Inception Distanceのオブジェクト中心適応であるSceneFIDを紹介する。
論文 参考訳(メタデータ) (2020-03-16T21:40:09Z) - 3D Object Detection From LiDAR Data Using Distance Dependent Feature
Extraction [7.04185696830272]
本研究は、LiDAR点雲の性質を遠距離で考慮し、3次元物体検出器の改良を提案する。
その結果、近距離および長距離オブジェクトのための個別ネットワークのトレーニングは、すべてのKITTIベンチマークの困難さに対するパフォーマンスを高めることが示された。
論文 参考訳(メタデータ) (2020-03-02T13:16:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。