Multi-Scale Denoising in the Feature Space for Low-Light Instance Segmentation
- URL: http://arxiv.org/abs/2402.18307v2
- Date: Tue, 10 Sep 2024 08:50:11 GMT
- Title: Multi-Scale Denoising in the Feature Space for Low-Light Instance Segmentation
- Authors: Joanne Lin, Nantheera Anantrasirichai, David Bull,
- Abstract summary: Instance segmentation for low-light imagery remains largely unexplored.
Our proposed method implements weighted non-local blocks (wNLB) in the feature extractor.
We introduce additional learnable weights at each layer in order to enhance the network's adaptability to real-world noise characteristics.
- Score: 2.642212767247493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instance segmentation for low-light imagery remains largely unexplored due to the challenges imposed by such conditions, for example shot noise due to low photon count, color distortions and reduced contrast. In this paper, we propose an end-to-end solution to address this challenging task. Our proposed method implements weighted non-local blocks (wNLB) in the feature extractor. This integration enables an inherent denoising process at the feature level. As a result, our method eliminates the need for aligned ground truth images during training, thus supporting training on real-world low-light datasets. We introduce additional learnable weights at each layer in order to enhance the network's adaptability to real-world noise characteristics, which affect different feature scales in different ways. Experimental results on several object detectors show that the proposed method outperforms the pretrained networks with an Average Precision (AP) improvement of at least +7.6, with the introduction of wNLB further enhancing AP by upto +1.3.
Related papers
- Pan-denoising: Guided Hyperspectral Image Denoising via Weighted Represent Coefficient Total Variation [20.240211073097758]
This paper introduces a novel paradigm for hyperspectral image (HSI) denoising, which is termed textitpan-denoising.
Panchromatic (PAN) images capture similar structures and textures to HSIs but with less noise. Consequently, pan-denoising has the potential to uncover underlying structures and details beyond the internal information modeling of traditional HSI denoising methods.
Experiments on synthetic and real-world datasets demonstrate that PWRCTV outperforms several state-of-the-art methods in terms of metrics and visual quality.
arXiv Detail & Related papers (2024-07-08T16:05:56Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Instance Segmentation in the Dark [43.85818645776587]
We take a deep look at instance segmentation in the dark and introduce several techniques that substantially boost the low-light inference accuracy.
We propose a novel learning method that relies on an adaptive weighted downsampling layer, a smooth-oriented convolutional block, and disturbance suppression learning.
We capture a real-world low-light instance segmentation dataset comprising over two thousand paired low/normal-light images with instance-level pixel-wise annotations.
arXiv Detail & Related papers (2023-04-27T16:02:29Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Adaptive Unfolding Total Variation Network for Low-Light Image
Enhancement [6.531546527140475]
Most existing enhancing algorithms in sRGB space only focus on the low visibility problem or suppress the noise under a hypothetical noise level.
We propose an adaptive unfolding total variation network (UTVNet) to approximate the noise level from the real sRGB low-light image.
Experiments on real-world low-light images clearly demonstrate the superior performance of UTVNet over state-of-the-art methods.
arXiv Detail & Related papers (2021-10-03T11:22:17Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.