Chain-of-Symbol Prompting Elicits Planning in Large Langauge Models
- URL: http://arxiv.org/abs/2305.10276v7
- Date: Mon, 5 Aug 2024 04:52:16 GMT
- Title: Chain-of-Symbol Prompting Elicits Planning in Large Langauge Models
- Authors: Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song, Wai Lam, Yue Zhang,
- Abstract summary: We propose a benchmark named Natural Language Planning and Action (Natala) composed of a set of novel tasks.
We find that current popular LLMs such as ChatGPT still lack abilities in complex planning.
We propose a novel method called CoS (Chain-of-Symbol Prompting) that represents the complex environments with condensed symbolic spatial representations.
- Score: 47.210211555783836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we take the initiative to investigate the performance of LLMs on complex planning tasks that require LLMs to understand a virtual spatial environment simulated via natural language and act correspondingly in text. We propose a benchmark named Natural Language Planning and Action (Natala) composed of a set of novel tasks: Brick World, NLVR-based Manipulations, and Natural Language Navigation. We found that current popular LLMs such as ChatGPT still lack abilities in complex planning. This arises a question -- do the LLMs have a good understanding of the environments described in natural language, or maybe other alternatives such as symbolic representations are neater and hence better to be understood by LLMs? To this end, we propose a novel method called CoS (Chain-of-Symbol Prompting) that represents the complex environments with condensed symbolic spatial representations during the chained intermediate thinking steps. CoS is easy to use and does not need additional training on LLMs. Extensive experiments indicate that CoS clearly surpasses the performance of the Chain-of-Thought (CoT) Prompting in all three planning tasks with even fewer tokens used in the inputs compared with CoT on ChatGPT and InstructGPT. The performance gain is strong, by up to 60.8% accuracy (from 31.8% to 92.6%) on Brick World for ChatGPT. CoS also reduces the number of tokens in the prompt obviously, by up to 65.8% of the tokens (from 407 to 139) for the intermediate steps from demonstrations on Brick World. Code and data available at: https://github.com/hanxuhu/chain-of-symbol-planning
Related papers
- From LLMs to Actions: Latent Codes as Bridges in Hierarchical Robot Control [58.72492647570062]
We introduce our method -- Learnable Latent Codes as Bridges (LCB) -- as an alternate architecture to overcome limitations.
We find that methodoutperforms baselines that leverage pure language as the interface layer on tasks that require reasoning and multi-step behaviors.
arXiv Detail & Related papers (2024-05-08T04:14:06Z) - Natural Language as Policies: Reasoning for Coordinate-Level Embodied Control with LLMs [7.746160514029531]
We demonstrate experimental results with LLMs that address robotics task planning problems.
Our approach acquires text descriptions of the task and scene objects, then formulates task planning through natural language reasoning.
Our approach is evaluated on a multi-modal prompt simulation benchmark.
arXiv Detail & Related papers (2024-03-20T17:58:12Z) - kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning [50.40636157214161]
Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language.
LLMs have achieved impressive performance in computer programs based on a natural language prompt.
This paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks.
arXiv Detail & Related papers (2023-12-17T17:26:50Z) - Chain-of-Thought Tuning: Masked Language Models can also Think Step By
Step in Natural Language Understanding [25.36416774024584]
Chain-of-Thought-Thought (CoT) is a technique that guides Large Language Models (LLMs) into multi-step reasoning through intermediate steps in natural language form.
We propose Chain-of-Thought-Thought (CoTT) as a two-step reasoning framework based on prompt tuning.
arXiv Detail & Related papers (2023-10-18T05:39:20Z) - Dynamic Planning with a LLM [15.430182858130884]
Large Language Models (LLMs) can solve many NLP tasks in zero-shot settings, but applications involving embodied agents remain problematic.
Our work presents LLM Dynamic Planner (LLM-DP), a neuro-symbolic framework where an LLM works hand-in-hand with a traditional planner to solve an embodied task.
arXiv Detail & Related papers (2023-08-11T21:17:13Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - PAL: Program-aided Language Models [112.94785609781503]
We present Program-Aided Language models (PaL) to understand natural language problems.
PaL offloads the solution step to a programmatic runtime such as a Python interpreter.
We set new state-of-the-art results in all 12 benchmarks.
arXiv Detail & Related papers (2022-11-18T18:56:13Z) - Neuro-Symbolic Causal Language Planning with Commonsense Prompting [67.06667162430118]
Language planning aims to implement complex high-level goals by decomposition into simpler low-level steps.
Previous methods require either manual exemplars or annotated programs to acquire such ability from large language models.
This paper proposes Neuro-Symbolic Causal Language Planner (CLAP) that elicits procedural knowledge from the LLMs with commonsense-infused prompting.
arXiv Detail & Related papers (2022-06-06T22:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.