kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning
- URL: http://arxiv.org/abs/2312.10771v1
- Date: Sun, 17 Dec 2023 17:26:50 GMT
- Title: kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning
- Authors: Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Qingyang Wu, Zhongfen Deng,
Jiangshu Du, Shuaiqi Liu, Yunlong Xu, Philip S. Yu
- Abstract summary: Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language.
LLMs have achieved impressive performance in computer programs based on a natural language prompt.
This paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks.
- Score: 50.40636157214161
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Task-Oriented Parsing (TOP) enables conversational assistants to interpret
user commands expressed in natural language, transforming them into structured
outputs that combine elements of both natural language and intent/slot tags.
Recently, Large Language Models (LLMs) have achieved impressive performance in
synthesizing computer programs based on a natural language prompt, mitigating
the gap between natural language and structured programs. Our paper focuses on
harnessing the capabilities of LLMs for semantic parsing tasks, addressing the
following three key research questions: 1) How can LLMs be effectively utilized
for semantic parsing tasks? 2) What defines an effective prompt? and 3) How can
LLM overcome the length constraint and streamline prompt design by including
all examples as prompts? We introduce k Nearest Neighbor In-Context
Learning(kNN-ICL), which simplifies prompt engineering by allowing it to be
built on top of any design strategy while providing access to all demo
examples. Extensive experiments show that: 1)Simple ICL without kNN search can
achieve a comparable performance with strong supervised models on the TOP
tasks, and 2) kNN-ICL significantly improves the comprehension of complex
requests by seamlessly integrating ICL with a nearest-neighbor approach.
Notably, this enhancement is achieved without the need for additional data or
specialized prompts.
Related papers
- Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
This paper introduces Structure Guided Prompt, a framework designed to improve the multi-step reasoning capabilities of Large Language Models (LLMs)
Our experiments show that this framework significantly enhances the reasoning capabilities of LLMs, enabling them to excel in a broader spectrum of natural language scenarios.
arXiv Detail & Related papers (2024-02-20T22:56:23Z) - A Simple but Effective Approach to Improve Structured Language Model
Output for Information Extraction [11.165093163378152]
Large language models (LLMs) have demonstrated impressive abilities in generating unstructured natural language according to instructions.
This paper introduces an efficient method, G&O, to enhance their structured text generation capabilities.
arXiv Detail & Related papers (2024-02-20T20:42:02Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks.
Their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language.
We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories.
arXiv Detail & Related papers (2024-01-12T12:10:28Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Can Large Language Models Understand Real-World Complex Instructions? [54.86632921036983]
Large language models (LLMs) can understand human instructions, but struggle with complex instructions.
Existing benchmarks are insufficient to assess LLMs' ability to understand complex instructions.
We propose CELLO, a benchmark for evaluating LLMs' ability to follow complex instructions systematically.
arXiv Detail & Related papers (2023-09-17T04:18:39Z) - Coupling Large Language Models with Logic Programming for Robust and
General Reasoning from Text [5.532477732693001]
We show that a large language model can serve as a highly effective few-shot semantically.
It can convert natural language sentences into a logical form that serves as input for answer set programs.
We demonstrate that this method achieves state-of-the-art performance on several benchmarks, including bAbI, StepGame, CLUTRR, and gSCAN.
arXiv Detail & Related papers (2023-07-15T03:29:59Z) - GPT is becoming a Turing machine: Here are some ways to program it [16.169056235216576]
We show that GPT-3 models can be triggered to execute programs that involve loops.
We show that prompts that may not even cover one full task example can trigger algorithmic behaviour.
arXiv Detail & Related papers (2023-03-25T00:43:41Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z) - Decomposed Prompting: A Modular Approach for Solving Complex Tasks [55.42850359286304]
We propose Decomposed Prompting to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks.
This modular structure allows each prompt to be optimized for its specific sub-task.
We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting.
arXiv Detail & Related papers (2022-10-05T17:28:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.