論文の概要: PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering
- arxiv url: http://arxiv.org/abs/2305.10415v6
- Date: Sun, 8 Sep 2024 01:04:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 04:24:51.591041
- Title: PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering
- Title(参考訳): PMC-VQA: 医用視覚質問応答のための視覚指導チューニング
- Authors: Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weixiong Lin, Ya Zhang, Yanfeng Wang, Weidi Xie,
- Abstract要約: MedVQA(Medicical Visual Question Answering)は、診断精度と医療提供を向上する重要な機会を提供する。
本稿では,事前学習した視覚エンコーダの視覚情報を大規模言語モデルに整列させることにより,医用視覚理解のための生成モデルを提案する。
PMC-VQAで提案されたモデルをトレーニングし、VQA-RAD、SLAKE、Image-Clef 2019など、複数の公開ベンチマークで微調整する。
- 参考スコア(独自算出の注目度): 56.25766322554655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical Visual Question Answering (MedVQA) presents a significant opportunity to enhance diagnostic accuracy and healthcare delivery by leveraging artificial intelligence to interpret and answer questions based on medical images. In this study, we reframe the problem of MedVQA as a generation task that naturally follows the human-machine interaction and propose a generative-based model for medical visual understanding by aligning visual information from a pre-trained vision encoder with a large language model. We establish a scalable pipeline to construct a large-scale medical visual question-answering dataset, named PMC-VQA, which contains 227k VQA pairs of 149k images that cover various modalities or diseases. We train the proposed model on PMC-VQA and then fine-tune it on multiple public benchmarks, e.g., VQA-RAD, SLAKE, and Image-Clef-2019, significantly outperforming existing MedVQA models in generating relevant, accurate free-form answers. In addition, we propose a test set that has undergone manual verification, which is significantly more challenging, serving to better monitor the development of generative MedVQA methods. To facilitate comprehensive evaluation and comparison, we have maintained a leaderboard at https://paperswithcode.com/paper/pmc-vqa-visual-instruction-tuning-for-medical, offering a centralized resource for tracking progress and benchmarking state-of-the-art approaches. The PMC-VQA dataset emerges as a vital resource for the field of research, and the MedVInT presents a significant breakthrough in the area of MedVQA.
- Abstract(参考訳): 医用ビジュアル質問回答(MedVQA)は,医療画像に基づく質問の解釈と回答に人工知能を活用することにより,診断精度と医療提供を向上する重要な機会を提供する。
本研究では,MedVQAの課題を,人間と機械の相互作用を自然に追従する生成タスクとして再編成し,事前学習した視覚エンコーダからの視覚情報を大きな言語モデルに整合させることにより,医用視覚理解のための生成モデルを提案する。
PMC-VQAは227kのVQA対の149k画像を含み、様々なモダリティや病気をカバーしています。
PMC-VQAで提案したモデルをトレーニングし、VQA-RAD、SLAKE、Image-Clef-2019といった複数の公開ベンチマークで微調整し、関連する正確なフリーフォームの回答を生成する上で、既存のMedVQAモデルよりも大幅に優れています。
さらに,手作業による検証を行うテストセットを提案する。これは非常に困難であり,生成型MedVQA手法の開発をよりよく監視するのに役立つ。
包括的な評価と比較を容易にするため、私たちはhttps://paperswithcode.com/paper/pmc-vqa-visual-instruction-tuning-for-medicalでリーダーボードを維持し、進捗を追跡し、最先端のアプローチをベンチマークするための集中的なリソースを提供しました。
PMC-VQAデータセットは研究分野の重要な資源として現れ、MedVInTはMedVQAの領域で重要なブレークスルーを示す。
関連論文リスト
- LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
最新の医療用マルチモーダル大規模言語モデル(med-MLLM)は、事前訓練において命令追従データを活用する。
LoGra-Medは新しいマルチグラフアライメントアルゴリズムで、画像のモダリティ、会話ベースの記述、拡張キャプション間でのトリプルト相関を強制する。
以上の結果から,LoGra-Medは医療用VQAの600K画像テキスト対に対してLAVA-Medと一致し,その10%でトレーニングした場合に有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T15:52:03Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - MISS: A Generative Pretraining and Finetuning Approach for Med-VQA [16.978523518972533]
本稿では,医療用VQAタスクのためのMultI-task Self-Supervised Learning based framework (MISS)を提案する。
我々は,テキストエンコーダとマルチモーダルエンコーダを統一し,マルチタスク学習を通じて画像テキスト機能を調整する。
提案手法は,より少ないマルチモーダルデータセットで優れた結果を得るとともに,生成VQAモデルの利点を実証する。
論文 参考訳(メタデータ) (2024-01-10T13:56:40Z) - Visual Question Answering in the Medical Domain [13.673890873313354]
本稿では,Med-VQAタスクのための小さなデータセットの問題を軽減するために,新しいコントラスト学習事前学習手法を提案する。
提案モデルでは,VQA-Med 2019テストセットで60%の精度を達成し,他の最先端のMed-VQAモデルに匹敵する結果を得た。
論文 参考訳(メタデータ) (2023-09-20T06:06:10Z) - Masked Vision and Language Pre-training with Unimodal and Multimodal
Contrastive Losses for Medical Visual Question Answering [7.669872220702526]
本稿では,入力画像とテキストの非モーダル・マルチモーダル特徴表現を学習する,新しい自己教師型アプローチを提案する。
提案手法は,3つの医用VQAデータセット上での最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2023-07-11T15:00:11Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - RAMM: Retrieval-augmented Biomedical Visual Question Answering with
Multi-modal Pre-training [45.38823400370285]
ヴィジュアル・アンド・ランゲージ・マルチモーダル事前学習と微調整は視覚的質問応答(VQA)において大きな成功を収めた。
本稿では, バイオメディカルVQAのためのRAMMという, 事前学習とファイントゥン検索のパラダイムを提案する。
論文 参考訳(メタデータ) (2023-03-01T14:21:19Z) - Medical visual question answering using joint self-supervised learning [8.817054025763325]
エンコーダは、自己アテンション機構で画像-テキスト二重モードに埋め込まれる。
デコーダはエンコーダの上部に接続され、小型の医療用VQAデータセットを使用して微調整される。
論文 参考訳(メタデータ) (2023-02-25T12:12:22Z) - Medical Visual Question Answering: A Survey [55.53205317089564]
VQA(Medicical Visual Question Answering)は、医療用人工知能と一般的なVQA課題の組み合わせである。
医療用VQAシステムは,医療用画像と自然言語による臨床的に関連性のある質問を前提として,妥当かつ説得力のある回答を予測することが期待されている。
論文 参考訳(メタデータ) (2021-11-19T05:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。