論文の概要: Emotion Recognition based on Psychological Components in Guided
Narratives for Emotion Regulation
- arxiv url: http://arxiv.org/abs/2305.10446v1
- Date: Mon, 15 May 2023 12:06:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 18:54:52.064789
- Title: Emotion Recognition based on Psychological Components in Guided
Narratives for Emotion Regulation
- Title(参考訳): 感情制御のためのガイドナラティブにおける心理的要素に基づく感情認識
- Authors: Gustave Cortal (LMF, LISN), Alain Finkel (LMF, IUF), Patrick Paroubek
(LISN), Lina Ye (LMF)
- Abstract要約: 本稿では,感情制御のためのアンケートを用いて収集した感情的感情の新たなコーパスを紹介する。
本研究では,コンポーネントの相互作用とその感情分類への影響について,機械学習手法と事前学習言語モデルを用いて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion regulation is a crucial element in dealing with emotional events and
has positive effects on mental health. This paper aims to provide a more
comprehensive understanding of emotional events by introducing a new French
corpus of emotional narratives collected using a questionnaire for emotion
regulation. We follow the theoretical framework of the Component Process Model
which considers emotions as dynamic processes composed of four interrelated
components (behavior, feeling, thinking and territory). Each narrative is
related to a discrete emotion and is structured based on all emotion components
by the writers. We study the interaction of components and their impact on
emotion classification with machine learning methods and pre-trained language
models. Our results show that each component improves prediction performance,
and that the best results are achieved by jointly considering all components.
Our results also show the effectiveness of pre-trained language models in
predicting discrete emotion from certain components, which reveal differences
in how emotion components are expressed.
- Abstract(参考訳): 感情調節は感情的な出来事を扱う上で重要な要素であり、精神的健康に肯定的な影響を及ぼす。
本稿では,感情制御のためのアンケートを用いて収集した感情的物語の新たなフランス語コーパスを導入することで,感情的出来事をより包括的に理解することを目的とする。
我々は、感情を4つの相互関連コンポーネント(行動、感覚、思考、領域)からなる動的なプロセスとみなすコンポーネントプロセスモデルの理論的枠組みに従う。
それぞれの物語は個別の感情と関連づけられ、作家による全ての感情の構成要素に基づいて構成される。
機械学習手法と事前学習した言語モデルを用いて,コンポーネントの相互作用と感情分類への影響について検討した。
その結果,各コンポーネントの予測性能が向上し,すべてのコンポーネントを共同で検討することで,最高の結果が得られることがわかった。
また, 学習済み言語モデルを用いて, 感情成分の表現方法の相違を明らかにすることで, 特定の成分から個別の感情を予測できることを示す。
関連論文リスト
- Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
人間の感情が感情の予測において有意であると考えられる特徴とどのように相関するかを検討する。
EmoTriggerを用いて、感情のトリガーを識別する大規模言語モデルの能力を評価する。
分析の結果、感情のトリガーは感情予測モデルにとって健全な特徴ではなく、様々な特徴と感情検出のタスクの間に複雑な相互作用があることが判明した。
論文 参考訳(メタデータ) (2023-11-16T06:20:13Z) - Where are We in Event-centric Emotion Analysis? Bridging Emotion Role
Labeling and Appraisal-based Approaches [10.736626320566707]
テキストにおける感情分析という用語は、様々な自然言語処理タスクを仮定する。
感情と出来事は2つの方法で関連していると我々は主張する。
我々は,NLPモデルに心理的評価理論を組み込んで事象を解釈する方法について議論する。
論文 参考訳(メタデータ) (2023-09-05T09:56:29Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - x-enVENT: A Corpus of Event Descriptions with Experiencer-specific
Emotion and Appraisal Annotations [13.324006587838523]
感情分析のための分類設定は、感情のエピソードに関与する異なる意味的役割を含む統合的な方法で行うべきであると論じる。
心理学における評価理論に基づいて、我々は、記述された出来事記述の英文コーパスを編纂する。
この記述には感情に満ちた状況が描かれており、感情に反応した人々の言及が含まれている。
論文 参考訳(メタデータ) (2022-03-21T12:02:06Z) - Emotion Recognition under Consideration of the Emotion Component Process
Model [9.595357496779394]
我々はScherer (2005) による感情成分プロセスモデル (CPM) を用いて感情コミュニケーションを説明する。
CPMは、感情は、出来事、すなわち主観的感情、認知的評価、表現、生理的身体反応、動機的行動傾向に対する様々なサブコンポーネントの協調過程であると述べている。
Twitter上での感情は、主に出来事の説明や主観的な感情の報告によって表現されているのに対し、文献では、著者はキャラクターが何をしているかを記述し、解釈を読者に任せることを好む。
論文 参考訳(メタデータ) (2021-07-27T15:53:25Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - A Multi-Componential Approach to Emotion Recognition and the Effect of
Personality [0.0]
本稿では,映画視聴中に引き起こされた感情体験を特徴付けるために,データ駆動型アプローチによる構成的枠組みを適用した。
その結果、様々な感情の違いは、数次元(少なくとも6次元)で捉えられることが示唆された。
その結果、限定的な記述子数を持つ成分モデルでは、経験的な離散的感情のレベルを予測できることがわかった。
論文 参考訳(メタデータ) (2020-10-22T01:27:23Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。