AnalogNAS: A Neural Network Design Framework for Accurate Inference with
Analog In-Memory Computing
- URL: http://arxiv.org/abs/2305.10459v1
- Date: Wed, 17 May 2023 07:39:14 GMT
- Title: AnalogNAS: A Neural Network Design Framework for Accurate Inference with
Analog In-Memory Computing
- Authors: Hadjer Benmeziane, Corey Lammie, Irem Boybat, Malte Rasch, Manuel Le
Gallo, Hsinyu Tsai, Ramachandran Muralidhar, Smail Niar, Ouarnoughi Hamza,
Vijay Narayanan, Abu Sebastian and Kaoutar El Maghraoui
- Abstract summary: Inference at the edge requires low latency, compact and power-efficient models.
analog/mixed signal in-memory computing hardware accelerators can easily transcend the memory wall of von Neuman architectures.
We propose AnalogNAS, a framework for automated Deep Neural Network (DNN) design targeting deployment on analog In-Memory Computing (IMC) inference accelerators.
- Score: 7.596833322764203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of Deep Learning (DL) is driven by efficient Deep Neural
Network (DNN) design and new hardware accelerators. Current DNN design is
primarily tailored for general-purpose use and deployment on commercially
viable platforms. Inference at the edge requires low latency, compact and
power-efficient models, and must be cost-effective. Digital processors based on
typical von Neumann architectures are not conducive to edge AI given the large
amounts of required data movement in and out of memory. Conversely,
analog/mixed signal in-memory computing hardware accelerators can easily
transcend the memory wall of von Neuman architectures when accelerating
inference workloads. They offer increased area and power efficiency, which are
paramount in edge resource-constrained environments. In this paper, we propose
AnalogNAS, a framework for automated DNN design targeting deployment on analog
In-Memory Computing (IMC) inference accelerators. We conduct extensive hardware
simulations to demonstrate the performance of AnalogNAS on State-Of-The-Art
(SOTA) models in terms of accuracy and deployment efficiency on various Tiny
Machine Learning (TinyML) tasks. We also present experimental results that show
AnalogNAS models achieving higher accuracy than SOTA models when implemented on
a 64-core IMC chip based on Phase Change Memory (PCM). The AnalogNAS search
code is released: https://github.com/IBM/analog-nas
Related papers
- RNC: Efficient RRAM-aware NAS and Compilation for DNNs on Resource-Constrained Edge Devices [0.30458577208819987]
We aim to develop edge-friendly deep neural networks (DNNs) for accelerators based on resistive random-access memory (RRAM)
We propose an edge compilation and resource-constrained RRAM-aware neural architecture search (NAS) framework to search for optimized neural networks meeting specific hardware constraints.
The resulting model from NAS optimized for speed achieved 5x-30x speedup.
arXiv Detail & Related papers (2024-09-27T15:35:36Z) - GPU-RANC: A CUDA Accelerated Simulation Framework for Neuromorphic Architectures [1.3401966602181168]
We introduce the GPU-based implementation of Reconfigurable Architecture for Neuromorphic Computing (RANC)
We demonstrate up to 780 times speedup compared to serial version of the RANC simulator based on a 512 neuromorphic core MNIST inference application.
arXiv Detail & Related papers (2024-04-24T21:08:21Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - SpikeSim: An end-to-end Compute-in-Memory Hardware Evaluation Tool for
Benchmarking Spiking Neural Networks [4.0300632886917]
SpikeSim is a tool that can perform realistic performance, energy, latency and area evaluation of IMC-mapped SNNs.
We propose SNN topological modifications leading to 1.24x and 10x reduction in the neuronal module's area and the overall energy-delay-product value.
arXiv Detail & Related papers (2022-10-24T01:07:17Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
Deep neural network (DNN) latency characterization is a time-consuming process.
We propose MAPLE-X which extends MAPLE by incorporating explicit prior knowledge of hardware devices and DNN architecture latency.
arXiv Detail & Related papers (2022-05-25T11:08:20Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
The shift towards ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
In this survey, we review the state-of-the-art ReRAM-based Deep Neural Networks (DNNs) many-core accelerators.
arXiv Detail & Related papers (2021-09-08T21:11:48Z) - FLASH: Fast Neural Architecture Search with Hardware Optimization [7.263481020106725]
Neural architecture search (NAS) is a promising technique to design efficient and high-performance deep neural networks (DNNs)
This paper proposes FLASH, a very fast NAS methodology that co-optimizes the DNN accuracy and performance on a real hardware platform.
arXiv Detail & Related papers (2021-08-01T23:46:48Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.