Predicting Side Effect of Drug Molecules using Recurrent Neural Networks
- URL: http://arxiv.org/abs/2305.10473v2
- Date: Wed, 10 Apr 2024 18:07:20 GMT
- Title: Predicting Side Effect of Drug Molecules using Recurrent Neural Networks
- Authors: Collin Beaudoin, Koustubh Phalak, Swaroop Ghosh,
- Abstract summary: Failure to identify side effects before submission to regulatory groups can cost millions of dollars and months of additional research to the companies.
Prior approaches rely on complex model designs and excessive parameter counts for side effect predictions.
We propose a approach that allows for the utilization of simple neural networks, specifically the recurrent neural network, with a 98+% reduction in the number of required parameters.
- Score: 2.089191490381739
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Identification and verification of molecular properties such as side effects is one of the most important and time-consuming steps in the process of molecule synthesis. For example, failure to identify side effects before submission to regulatory groups can cost millions of dollars and months of additional research to the companies. Failure to identify side effects during the regulatory review can also cost lives. The complexity and expense of this task have made it a candidate for a machine learning-based solution. Prior approaches rely on complex model designs and excessive parameter counts for side effect predictions. We believe reliance on complex models only shifts the difficulty away from chemists rather than alleviating the issue. Implementing large models is also expensive without prior access to high-performance computers. We propose a heuristic approach that allows for the utilization of simple neural networks, specifically the recurrent neural network, with a 98+% reduction in the number of required parameters compared to available large language models while still obtaining near identical results as top-performing models.
Related papers
- YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - RGFN: Synthesizable Molecular Generation Using GFlowNets [51.33672611338754]
We propose Reaction-GFlowNet, an extension of the GFlowNet framework that operates directly in the space of chemical reactions.
RGFN allows out-of-the-box synthesizability while maintaining comparable quality of generated candidates.
We demonstrate the effectiveness of the proposed approach across a range of oracle models, including pretrained proxy models and GPU-accelerated docking.
arXiv Detail & Related papers (2024-06-01T13:11:11Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Cross-Model Comparative Loss for Enhancing Neuronal Utility in Language
Understanding [82.46024259137823]
We propose a cross-model comparative loss for a broad range of tasks.
We demonstrate the universal effectiveness of comparative loss through extensive experiments on 14 datasets from 3 distinct NLU tasks.
arXiv Detail & Related papers (2023-01-10T03:04:27Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Neural parameter calibration for large-scale multi-agent models [0.7734726150561089]
We present a method to retrieve accurate probability densities for parameters using neural equations.
The two combined create a powerful tool that can quickly estimate densities on model parameters, even for very large systems.
arXiv Detail & Related papers (2022-09-27T17:36:26Z) - Go Beyond Multiple Instance Neural Networks: Deep-learning Models based
on Local Pattern Aggregation [0.0]
convolutional neural networks (CNNs) have brought breakthroughs in processing clinical electrocardiograms (ECGs) and speaker-independent speech.
In this paper, we propose local pattern aggregation-based deep-learning models to effectively deal with both problems.
The novel network structure, called LPANet, has cropping and aggregation operations embedded into it.
arXiv Detail & Related papers (2022-05-28T13:18:18Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Data Transfer Approaches to Improve Seq-to-Seq Retrosynthesis [1.6449390849183363]
Retrosynthesis is a problem to infer reactant compounds to synthesize a given product compound through chemical reactions.
Recent studies on retrosynthesis focus on proposing more sophisticated prediction models.
The dataset to feed the models also plays an essential role in achieving the best generalizing models.
arXiv Detail & Related papers (2020-10-02T05:27:51Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.