YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention
- URL: http://arxiv.org/abs/2406.19136v6
- Date: Tue, 13 Aug 2024 07:12:37 GMT
- Title: YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention
- Authors: Chenxu Wang, Haowei Ming, Jian He, Yao Lu, Junhong Chen,
- Abstract summary: Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
- Score: 9.018408514318631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of drug molecule solubility is crucial for therapeutic effectiveness and safety. Traditional methods often miss complex molecular structures, leading to inaccuracies. We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks to enhance prediction precision. GCNs excel at capturing intricate molecular topologies by modeling the relationships between atoms and bonds. Transformers, with their self-attention mechanisms, effectively identify long-range dependencies within molecules, capturing global interactions. LSTMs process sequential data, preserving long-term dependencies and integrating temporal information within molecular sequences. This multifaceted approach leverages the strengths of each component, resulting in a model that comprehensively understands and predicts molecular properties. Trained on 9,943 compounds and tested on an anticancer dataset, the YZS-Model achieved an $R^2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models ($R^2$ of 0.52 and RMSE of 0.61). In an independent test, it demonstrated an RMSE of 1.05, improving accuracy by 45.9%. The integration of these deep learning techniques allows the YZS-Model to learn valuable features from complex data without predefined parameters, handle large datasets efficiently, and adapt to various molecular types. This comprehensive capability significantly improves predictive accuracy and model generalizability. Its precision in solubility predictions can expedite drug development by optimizing candidate selection, reducing costs, and enhancing efficiency. Our research underscores deep learning's transformative potential in pharmaceutical science, particularly for solubility prediction and drug design.
Related papers
- Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
Mutagenicity is a concern due to its association with genetic mutations which can result in a variety of negative consequences.
In this work, we introduce a novel stacked ensemble based mutagenicity prediction model.
arXiv Detail & Related papers (2024-09-03T09:14:21Z) - Accelerating Drug Safety Assessment using Bidirectional-LSTM for SMILES Data [0.0]
Bi-Directional Long Short Term Memory (BiLSTM) is a variant of Recurrent Neural Network (RNN) that processes input molecular sequences.
The proposed work aims to understand the sequential patterns encoded in the SMILES strings, which are then utilised for predicting the toxicity of the molecules.
arXiv Detail & Related papers (2024-07-08T18:12:11Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey [22.73437302209673]
We review and quantitatively analyze recent deep learning methods based on various benchmarks.
We find that integrating molecular information significantly improves molecular property prediction (MPP) for both regression and classification tasks.
We also discover that enriching 2D graphs with 1D SMILES boosts multi-modal learning performance for regression tasks by up to 9.1%, and augmenting 2D graphs with 3D information increases performance for classification tasks by up to 13.2%.
arXiv Detail & Related papers (2024-02-11T17:29:58Z) - Machine Learning Small Molecule Properties in Drug Discovery [44.62264781248437]
We review a wide range of properties, including binding affinities, solubility, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
We discuss existing popular descriptors and embeddings, such as chemical fingerprints and graph-based neural networks.
Finally, techniques to provide an understanding of model predictions, especially for critical decision-making in drug discovery are assessed.
arXiv Detail & Related papers (2023-08-02T22:18:41Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Accurate, reliable and interpretable solubility prediction of druglike
molecules with attention pooling and Bayesian learning [1.8275108630751844]
In silico prediction of solubility has been studied for its utility in virtual screening and lead optimization.
Recently, machine learning (ML) methods using experimental data has been popular because physics-based methods are not suitable for high- throughput tasks.
In this paper, we develop graph neural networks (GNNs) with the self-attention readout layer to improve prediction performance.
arXiv Detail & Related papers (2022-09-29T07:48:10Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
Drug target interaction (DTI) prediction is a foundational task for in silico drug discovery.
Recent years have witnessed promising progress for deep learning in DTI predictions.
We propose a Molecular Interaction Transformer (TransMol) to address these limitations.
arXiv Detail & Related papers (2020-04-23T18:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.