論文の概要: Learning Likelihood Ratios with Neural Network Classifiers
- arxiv url: http://arxiv.org/abs/2305.10500v2
- Date: Mon, 8 Jan 2024 21:09:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-10 20:19:14.426349
- Title: Learning Likelihood Ratios with Neural Network Classifiers
- Title(参考訳): ニューラルネットワーク分類器を用いた学習度比
- Authors: Shahzar Rizvi, Mariel Pettee, Benjamin Nachman
- Abstract要約: 確率比の近似は、ニューラルネットワークベースの分類器の巧妙なパラメトリゼーションを用いて計算することができる。
本稿では、いくつかの共通損失関数の性能と分類器出力のパラメトリゼーションを詳述した一連の実証研究について述べる。
- 参考スコア(独自算出の注目度): 0.12277343096128711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The likelihood ratio is a crucial quantity for statistical inference in
science that enables hypothesis testing, construction of confidence intervals,
reweighting of distributions, and more. Many modern scientific applications,
however, make use of data- or simulation-driven models for which computing the
likelihood ratio can be very difficult or even impossible. By applying the
so-called ``likelihood ratio trick,'' approximations of the likelihood ratio
may be computed using clever parametrizations of neural network-based
classifiers. A number of different neural network setups can be defined to
satisfy this procedure, each with varying performance in approximating the
likelihood ratio when using finite training data. We present a series of
empirical studies detailing the performance of several common loss functionals
and parametrizations of the classifier output in approximating the likelihood
ratio of two univariate and multivariate Gaussian distributions as well as
simulated high-energy particle physics datasets.
- Abstract(参考訳): 確率比は、仮説テスト、信頼区間の構築、分布の再重み付けなどを可能にする科学における統計的推測にとって重要な量である。
しかし、現代の科学応用の多くは、確率比の計算が非常に困難あるいは不可能であるデータ駆動モデルやシミュレーション駆動モデルを使用している。
いわゆる ‘likelihood ratio trick’ を適用することで、確率比の近似をニューラルネットワークに基づく分類器の巧妙なパラメータ化を用いて計算することができる。
この手順を満たすために、複数の異なるニューラルネットワークの設定を定義することができ、それぞれが有限のトレーニングデータを使用する場合の確率比を近似する性能を持つ。
本稿では,二つの単変量分布と多変量ガウス分布の確率比とシミュレーションされた高エネルギー粒子物理データセットを近似して,いくつかの共通損失関数の性能と分類器出力のパラメトリゼーションを詳述する。
関連論文リスト
- Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Adaptive Conditional Quantile Neural Processes [9.066817971329899]
条件量子ニューラルプロセス(CQNP)は、ニューラルプロセスファミリーの新たなメンバーである。
本稿では,情報量推定に焦点をあてることから学習する量子レグレッションの拡張を提案する。
実データと合成データセットによる実験は、予測性能を大幅に改善した。
論文 参考訳(メタデータ) (2023-05-30T06:19:19Z) - How to Combine Variational Bayesian Networks in Federated Learning [0.0]
フェデレートラーニングにより、複数のデータセンターが機密データを公開することなく、協力的に中央モデルをトレーニングできる。
決定論的モデルは高い予測精度を達成することができ、キャリブレーションの欠如と不確実性を定量化する能力は、安全クリティカルなアプリケーションには問題となる。
変分ベイズニューラルネットワークに対する様々なアグリゲーションスキームの効果について検討する。
論文 参考訳(メタデータ) (2022-06-22T07:53:12Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
シミュレータに基づく統計モデルに対する自由な推論は、機械学習と統計のコミュニティの両方において、関心の高まりを招いている。
本稿では、Jensen-Shannon- divergenceの計算特性を用いて、モデルパラメータに対する推定、仮説テスト、信頼区間の構築を可能にする理論的結果のセットを導出する。
このような近似はより集中的なアプローチの素早い代替手段であり、シミュレーターベースモデルの多種多様な応用には魅力的である。
論文 参考訳(メタデータ) (2022-05-22T18:00:13Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Amortised Likelihood-free Inference for Expensive Time-series Simulators
with Signatured Ratio Estimation [1.675857332621569]
自然科学と社会科学の複雑な力学のシミュレーションモデルでは、一般に、抽出可能な可能性関数が欠如している。
機械学習の最近の進歩は、他の難解な可能性関数を推定するための新しいアルゴリズムを導入している。
最近導入されたシグネチャカーネルに基づくパスシグネチャを用いたシーケンシャルデータのためのカーネル分類器を提案する。
論文 参考訳(メタデータ) (2022-02-23T15:59:34Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。