Learning Pose Image Manifolds Using Geometry-Preserving GANs and
Elasticae
- URL: http://arxiv.org/abs/2305.10513v1
- Date: Wed, 17 May 2023 18:45:56 GMT
- Title: Learning Pose Image Manifolds Using Geometry-Preserving GANs and
Elasticae
- Authors: Shenyuan Liang, Pavan Turaga, Anuj Srivastava
- Abstract summary: Geometric Style-GAN (Geom-SGAN) maps images to low-dimensional latent representations.
Euler's elastica smoothly interpolate between directed points (points + tangent directions) in the low-dimensional latent space.
- Score: 13.202747831999414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the challenge of learning image manifolds,
specifically pose manifolds, of 3D objects using limited training data. It
proposes a DNN approach to manifold learning and for predicting images of
objects for novel, continuous 3D rotations. The approach uses two distinct
concepts: (1) Geometric Style-GAN (Geom-SGAN), which maps images to
low-dimensional latent representations and maintains the (first-order) manifold
geometry. That is, it seeks to preserve the pairwise distances between base
points and their tangent spaces, and (2) uses Euler's elastica to smoothly
interpolate between directed points (points + tangent directions) in the
low-dimensional latent space. When mapped back to the larger image space, the
resulting interpolations resemble videos of rotating objects. Extensive
experiments establish the superiority of this framework in learning paths on
rotation manifolds, both visually and quantitatively, relative to
state-of-the-art GANs and VAEs.
Related papers
- GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
arXiv Detail & Related papers (2024-03-15T12:24:36Z) - Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers [8.781861951759948]
This paper presents Geo-SIC, the first deep learning model to learn deformable shapes in a deformation space for an improved performance of image classification.
We introduce a newly designed framework that (i) simultaneously derives features from both image and latent shape spaces with large intra-class variations.
We develop a boosted classification network, equipped with an unsupervised learning of geometric shape representations.
arXiv Detail & Related papers (2022-10-25T01:55:17Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - Joint Deep Multi-Graph Matching and 3D Geometry Learning from
Inhomogeneous 2D Image Collections [57.60094385551773]
We propose a trainable framework for learning a deformable 3D geometry model from inhomogeneous image collections.
We in addition obtain the underlying 3D geometry of the objects depicted in the 2D images.
arXiv Detail & Related papers (2021-03-31T17:25:36Z) - Quadric hypersurface intersection for manifold learning in feature space [52.83976795260532]
manifold learning technique suitable for moderately high dimension and large datasets.
The technique is learned from the training data in the form of an intersection of quadric hypersurfaces.
At test time, this manifold can be used to introduce an outlier score for arbitrary new points.
arXiv Detail & Related papers (2021-02-11T18:52:08Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
We propose a novel deep neural network based method, called PUGeo-Net, to generate uniform dense point clouds.
Thanks to its geometry-centric nature, PUGeo-Net works well for both CAD models with sharp features and scanned models with rich geometric details.
arXiv Detail & Related papers (2020-02-24T14:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.