Measuring Non-local Brane Order with Error-corrected Parity Snapshots
- URL: http://arxiv.org/abs/2305.10592v1
- Date: Wed, 17 May 2023 21:56:57 GMT
- Title: Measuring Non-local Brane Order with Error-corrected Parity Snapshots
- Authors: Junhyeok Hur and Wonjun Lee and Kiryang Kwon and SeungJung Huh and Gil
Young Cho and Jae-yoon Choi
- Abstract summary: We develop an error correction method for large-scale neutral atom quantum simulators using optical lattices.
Our method can distinguish correlated particle-hole pairs from uncorrelated holes in the Mott insulator.
Our work provides a promising avenue for investigating and characterizing exotic phases of matters in large-scale quantum simulators.
- Score: 9.00095895405037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exotic quantum many-body states, such as Haldane and spin liquid phases, can
exhibit remarkable features like fractional excitations and non-abelian
statistics and offer new understandings of quantum entanglement in many-body
quantum systems. These phases are classified by non-local correlators that can
be directly measured in atomic analog quantum simulating platforms, such as
optical lattices and Rydberg atom arrays. However, characterizing these phases
in large systems is experimentally challenging because they are sensitive to
local errors like atom loss, which suppress its signals exponentially.
Additionally, protocols for systematically identifying and mitigating
uncorrelated errors in analog quantum simulators are lacking. Here, we address
these challenges by developing an error correction method for large-scale
neutral atom quantum simulators using optical lattices. Our error correction
method can distinguish correlated particle-hole pairs from uncorrelated holes
in the Mott insulator. After removing the uncorrelated errors, we observe a
dramatic improvement in the non-local parity correlator and find the perimeter
scaling law. Furthermore, the error model provides a statistical estimation of
fluctuations in site occupation, from which we measure the generalized brane
correlator and confirm that it can be an order parameter for Mott insulators in
two dimensions. Our work provides a promising avenue for investigating and
characterizing exotic phases of matters in large-scale quantum simulators.
Related papers
- Quantum error detection with noise-resilient parity-controlled gate in two-dimensional Rydberg atom arrays [0.4473518548010192]
Quantum error detection relies on precise measurement of qubit parity.
We introduce a resilient parity-controlled gate tailored for detecting quantum errors within a 2D Rydberg atom array.
arXiv Detail & Related papers (2024-05-29T23:13:57Z) - Symmetry-protection Zeno phase transition in monitored lattice gauge theories [0.0]
We show the existence of a sharp transition, triggered by the measurement rate, between a protected gauge-theory regime and an irregular regime.
Our results shed light on the dissipative criticality of strongly-interacting, highly-constrained quantum systems.
arXiv Detail & Related papers (2024-05-28T18:18:06Z) - Incoherent Approximation of Leakage in Quantum Error Correction [0.03922370499388702]
Quantum error correcting codes typically do not account for quantum state transitions - leakage - out of the computational subspace.
We introduce a Random Phase Approximation (RPA) on quantum channels that preserves the incoherence between the computational and leakage subspaces.
We show that RPA yields accurate error correction statistics in the repetition and surface codes with physical error parameters.
arXiv Detail & Related papers (2023-12-16T00:52:23Z) - Scalable evaluation of incoherent infidelity in quantum devices [0.0]
We introduce the incoherent infidelity as a measure of incoherent errors.
This method is applicable to generic quantum evolutions subjected to time-dependent Markovian noise.
It provides an error quantifier for the target circuit, rather than an error averaged over many circuits or quantum gates.
arXiv Detail & Related papers (2023-05-30T19:03:42Z) - Lattice gauge theory and topological quantum error correction with
quantum deviations in the state preparation and error detection [0.0]
We focus on the topological surface code, and study the case when the code suffers from both noise and coherent noise on the multi-qubit entanglement gates.
We conclude that this type of unavoidable coherent errors could have a fatal impact on the error correction performance.
arXiv Detail & Related papers (2023-01-30T13:12:41Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.