Quantum error detection with noise-resilient parity-controlled gate in two-dimensional Rydberg atom arrays
- URL: http://arxiv.org/abs/2405.19564v1
- Date: Wed, 29 May 2024 23:13:57 GMT
- Title: Quantum error detection with noise-resilient parity-controlled gate in two-dimensional Rydberg atom arrays
- Authors: F. Q. Guo, S. L. Su, Weibin Li, X. Q. Shao,
- Abstract summary: Quantum error detection relies on precise measurement of qubit parity.
We introduce a resilient parity-controlled gate tailored for detecting quantum errors within a 2D Rydberg atom array.
- Score: 0.4473518548010192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error detection relies primarily on precise measurement of qubit parity, a fundamental operation in quantum information processing. Here, we introduce a resilient parity-controlled gate tailored for detecting quantum errors within a 2D Rydberg atom array. Our method enables the discrimination between even and odd parities of virtually excited control atoms by tracking the dynamic evolution of an auxiliary atom. Using spin-exchange dipolar interactions of Rydberg states and single- and two-photon driving between ground states and Rydberg states, our method speeds up Rydberg-parity measurements by a large amount compared to previous methods. In practical application, we explore three-qubit repetition codes, standard surface codes featuring stabilizers in the forms $ZZZZ$ and $XXXX$, as well as rotated surface codes in the $XZZX$ configuration, facilitating the measurement of stabilizers with a single-shot readout. We carry out thorough numerical simulations to evaluate the feasibility of our strategy, considering potential experimental imperfections such as undesired interactions between Rydberg states, fluctuations in atomic positions, dephasing noise, and laser amplitude inhomogeneities. Particular emphasis is placed on ensuring the reliability and advantages of the physical mechanisms of the parity meter. These results affirm the robustness and viability of our protocol, positioning it as a promising candidate for quantum error detection employing the Rydberg atom system in the foreseeable future.
Related papers
- Measuring Non-local Brane Order with Error-corrected Parity Snapshots [9.00095895405037]
We develop an error correction method for large-scale neutral atom quantum simulators using optical lattices.
Our method can distinguish correlated particle-hole pairs from uncorrelated holes in the Mott insulator.
Our work provides a promising avenue for investigating and characterizing exotic phases of matters in large-scale quantum simulators.
arXiv Detail & Related papers (2023-05-17T21:56:57Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
We show how to enhance the precision of measurements beyond the standard quantum limit.
To do so, one can reshape the quantum projection noise -- a strategy known as squeezing.
We present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions.
arXiv Detail & Related papers (2023-03-14T16:35:17Z) - Quantum control of Rydberg atoms for mesoscopic-scale quantum state and
circuit preparation [0.0]
Individually trapped Rydberg atoms show significant promise as a platform for scalable quantum simulation.
We show that quantum control can be used to reliably generate fully connected cluster states and to simulate the error-correction encoding circuit.
arXiv Detail & Related papers (2023-02-15T19:00:01Z) - Robust control and optimal Rydberg states for neutral atom two-qubit
gates [0.0]
We investigate the robustness of two-qubit gates to deviations of experimental controls on a neutral atom platform utilizing Rydberg states.
We construct robust CZ gates that retain high Bell state fidelity $F > 0.999$ in the presence of significant deviations of the coupling strength to the Rydberg state.
arXiv Detail & Related papers (2022-12-20T10:53:24Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms [1.3124513975412255]
We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with Rydberg atoms.
We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations.
Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations.
arXiv Detail & Related papers (2020-09-08T13:11:22Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.