論文の概要: Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis
- arxiv url: http://arxiv.org/abs/2305.10754v2
- Date: Mon, 3 Jun 2024 01:35:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 21:39:44.222869
- Title: Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis
- Title(参考訳): MCI因果解析のための逆階層拡散モデルを用いた脳イメージング-グラフ生成
- Authors: Qiankun Zuo, Hao Tian, Chi-Man Pun, Hongfei Wang, Yudong Zhang, Jin Hong,
- Abstract要約: 機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
- 参考スコア(独自算出の注目度): 44.45598796591008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective connectivity can describe the causal patterns among brain regions. These patterns have the potential to reveal the pathological mechanism and promote early diagnosis and effective drug development for cognitive disease. However, the current methods utilize software toolkits to extract empirical features from brain imaging to estimate effective connectivity. These methods heavily rely on manual parameter settings and may result in large errors during effective connectivity estimation. In this paper, a novel brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment (MCI) analysis. To be specific, the proposed BIGG framework is based on the diffusion denoising probabilistic models (DDPM), where each denoising step is modeled as a generative adversarial network (GAN) to progressively translate the noise and conditional fMRI to effective connectivity. The hierarchical transformers in the generator are designed to estimate the noise at multiple scales. Each scale concentrates on both spatial and temporal information between brain regions, enabling good quality in noise removal and better inference of causal relations. Meanwhile, the transformer-based discriminator constrains the generator to further capture global and local patterns for improving high-quality and diversity generation. By introducing the diffusive factor, the denoising inference with a large sampling step size is more efficient and can maintain high-quality results for effective connectivity generation. Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model. The proposed model not only achieves superior prediction performance compared with other competing methods but also predicts MCI-related causal connections that are consistent with clinical studies.
- Abstract(参考訳): 効果的な接続性は、脳領域間の因果パターンを記述することができる。
これらのパターンは、病態のメカニズムを明らかにし、早期診断と認知疾患に対する効果的な薬物開発を促進する可能性がある。
しかし、現在の手法ではソフトウェアツールキットを用いて脳画像から経験的特徴を抽出し、効果的な接続性を推定している。
これらの手法は手動のパラメータ設定に大きく依存しており、効果的な接続推定の際に大きなエラーが発生する可能性がある。
本稿では、機能的磁気共鳴画像(fMRI)を軽度認知障害(MCI)解析に有効な接続性に変換するため、新しい脳画像合成(BIGG)フレームワークを提案する。
具体的には、BIGGフレームワークは拡散復調確率モデル(DDPM)に基づいており、各復調ステップをGAN(Generative Adversarial Network)としてモデル化し、ノイズと条件fMRIを効果的に接続する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
各尺度は、脳領域間の空間的情報と時間的情報の両方に集中し、ノイズ除去の良質な品質と因果関係のより良い推論を可能にする。
一方、トランスを用いた判別器は、高品質で多様性の高い生成を改善するために、グローバルなパターンとローカルなパターンをさらに捉えるよう、ジェネレータを制約する。
拡散係数を導入することにより、サンプリングステップサイズが大きいデノイング推論をより効率的にし、効率的な接続生成のための高品質な結果を維持することができる。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
提案モデルは,他の競合手法と比較して優れた予測性能を得るだけでなく,臨床研究と整合したMCI関連因果関係も予測する。
関連論文リスト
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - BDHT: Generative AI Enables Causality Analysis for Mild Cognitive Impairment [34.60961915466469]
軽度認知障害 (MCI) 解析に有効な接続性を推定するために, 階層型トランスフォーマー (BDHT) を用いた脳ディフューザを提案する。
提案手法は,既存手法に比べて精度と頑健性に優れる。
論文 参考訳(メタデータ) (2023-12-14T15:12:00Z) - Alzheimer's Disease Prediction via Brain Structural-Functional Deep
Fusing Network [5.945843237682432]
機能的および構造的情報を融合するために, クロスモーダルトランスフォーマー生成対向ネットワーク (CT-GAN) を提案する。
生成した接続特性を解析することにより,AD関連脳の接続を同定することができる。
パブリックADNIデータセットの評価から,提案したCT-GANは予測性能を劇的に向上し,AD関連脳領域を効果的に検出できることが示された。
論文 参考訳(メタデータ) (2023-09-28T07:06:42Z) - DiffGAN-F2S: Symmetric and Efficient Denoising Diffusion GANs for
Structural Connectivity Prediction from Brain fMRI [15.40111168345568]
構造接続(SC)と機能的磁気共鳴イメージング(fMRI)の信頼性非直線マッピング関係を橋渡しすることは困難である
脳のfMRIからエンド・ツー・エンド・エンドの方法でSCを予測するために,新しい拡散生成逆ネットワークを用いたfMRI-to-SCモデルを提案する。
論文 参考訳(メタデータ) (2023-09-28T06:55:50Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
階層型構造機能接続ファジング(HSCF)モデルを提案し,脳構造機能接続行列を構築した。
公的なアルツハイマー病神経画像イニシアチブデータベース上で行われた幅広いテストの結果、提案モデルは競合するアプローチよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-16T05:22:25Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Characterization Multimodal Connectivity of Brain Network by Hypergraph
GAN for Alzheimer's Disease Analysis [30.99183477161096]
脳ネットワークを特徴付けるマルチモーダル・ニューロイメージングデータは、現在、アルツハイマー病(AD)解析の高度な技術である。
DTI と rs-fMRI の組合せから脳ネットワークのマルチモーダル接続を生成するための新しいハイパーグラフ生成支援ネットワーク (HGGAN) を提案する。
論文 参考訳(メタデータ) (2021-07-21T09:02:29Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。