論文の概要: DiffGAN-F2S: Symmetric and Efficient Denoising Diffusion GANs for
Structural Connectivity Prediction from Brain fMRI
- arxiv url: http://arxiv.org/abs/2309.16205v1
- Date: Thu, 28 Sep 2023 06:55:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 15:49:22.169069
- Title: DiffGAN-F2S: Symmetric and Efficient Denoising Diffusion GANs for
Structural Connectivity Prediction from Brain fMRI
- Title(参考訳): DiffGAN-F2S:脳MRIによる構造接続性予測のための対称性と高効率拡散GAN
- Authors: Qiankun Zuo, Ruiheng Li, Yi Di, Hao Tian, Changhong Jing, Xuhang Chen,
Shuqiang Wang
- Abstract要約: 構造接続(SC)と機能的磁気共鳴イメージング(fMRI)の信頼性非直線マッピング関係を橋渡しすることは困難である
脳のfMRIからエンド・ツー・エンド・エンドの方法でSCを予測するために,新しい拡散生成逆ネットワークを用いたfMRI-to-SCモデルを提案する。
- 参考スコア(独自算出の注目度): 15.40111168345568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mapping from functional connectivity (FC) to structural connectivity (SC) can
facilitate multimodal brain network fusion and discover potential biomarkers
for clinical implications. However, it is challenging to directly bridge the
reliable non-linear mapping relations between SC and functional magnetic
resonance imaging (fMRI). In this paper, a novel diffusision generative
adversarial network-based fMRI-to-SC (DiffGAN-F2S) model is proposed to predict
SC from brain fMRI in an end-to-end manner. To be specific, the proposed
DiffGAN-F2S leverages denoising diffusion probabilistic models (DDPMs) and
adversarial learning to efficiently generate high-fidelity SC through a few
steps from fMRI. By designing the dual-channel multi-head spatial attention
(DMSA) and graph convolutional modules, the symmetric graph generator first
captures global relations among direct and indirect connected brain regions,
then models the local brain region interactions. It can uncover the complex
mapping relations between fMRI and structural connectivity. Furthermore, the
spatially connected consistency loss is devised to constrain the generator to
preserve global-local topological information for accurate intrinsic SC
prediction. Testing on the public Alzheimer's Disease Neuroimaging Initiative
(ADNI) dataset, the proposed model can effectively generate empirical
SC-preserved connectivity from four-dimensional imaging data and shows superior
performance in SC prediction compared with other related models. Furthermore,
the proposed model can identify the vast majority of important brain regions
and connections derived from the empirical method, providing an alternative way
to fuse multimodal brain networks and analyze clinical disease.
- Abstract(参考訳): 機能的接続(FC)から構造的接続(SC)へのマッピングは、マルチモーダル脳ネットワークの融合を促進し、臨床応用のための潜在的なバイオマーカーを発見する。
しかし、SCと機能的磁気共鳴画像(fMRI)の信頼性の高い非線形マッピング関係を直接ブリッジすることは困難である。
本稿では,脳のfMRIからF2Sまでをエンド・ツー・エンドで予測するために,新しい拡散生成対向ネットワークを用いたfMRI-to-SC(DiffGAN-F2S)モデルを提案する。
具体的には、DiffGAN-F2Sは拡散確率モデル(DDPM)と敵対学習を活用し、fMRIから数ステップで高忠実度SCを効率的に生成する。
デュアルチャネルマルチヘッド空間アテンション(DMSA)とグラフ畳み込みモジュールを設計することにより、対称グラフ生成器はまず直接および間接的に連結された脳領域間のグローバルな関係を捉え、次に局所的な脳領域の相互作用をモデル化する。
fMRIと構造接続の複雑なマッピング関係を明らかにすることができる。
さらに、空間的に接続された整合性損失を発生元に制約し、グローバルな局所的な位相情報を正確に固有のSC予測のために保存する。
一般アルツハイマー病神経イメージングイニシアチブ(adni)データセット上でテストした結果,提案モデルは4次元画像データから経験的sc保存接続を効果的に生成し,他の関連モデルと比較してsc予測の優れた性能を示す。
さらに,本モデルでは,脳の重要領域の大部分と経験的手法から得られた接続を同定し,マルチモーダル脳ネットワークを融合し臨床疾患を解析する代替手段を提供する。
関連論文リスト
- Copula-Linked Parallel ICA: A Method for Coupling Structural and Functional MRI brain Networks [0.5277756703318045]
機能的MRI(fMRI)と構造的MRI(sMRI)を融合させる以前の研究では、このアプローチの利点が示されている。
我々は、深層学習フレームワーク、コプラと独立成分分析(ICA)を組み合わせた新しい融合法、コプラリンク並列ICA(CLiP-ICA)を開発した。
CLiP-ICAは、脳、感覚運動、視覚、認知制御、デフォルトモードネットワークなど、強い結合と弱い結合sMRIとfMRIネットワークの両方を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-10-14T01:35:41Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Alzheimer's Disease Prediction via Brain Structural-Functional Deep
Fusing Network [5.945843237682432]
機能的および構造的情報を融合するために, クロスモーダルトランスフォーマー生成対向ネットワーク (CT-GAN) を提案する。
生成した接続特性を解析することにより,AD関連脳の接続を同定することができる。
パブリックADNIデータセットの評価から,提案したCT-GANは予測性能を劇的に向上し,AD関連脳領域を効果的に検出できることが示された。
論文 参考訳(メタデータ) (2023-09-28T07:06:42Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
階層型構造機能接続ファジング(HSCF)モデルを提案し,脳構造機能接続行列を構築した。
公的なアルツハイマー病神経画像イニシアチブデータベース上で行われた幅広いテストの結果、提案モデルは競合するアプローチよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-16T05:22:25Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
本稿では,脳疾患診断のためのマルチスケールFCN解析を行うための新しいフレームワークを提案する。
まず、マルチスケールFCNを計算するために、明確に定義されたマルチスケールアトラスのセットを用いる。
そこで我々は, 生物的に有意な脳階層的関係を多スケールアトラスの領域で利用し, 結節プールを行う。
論文 参考訳(メタデータ) (2022-09-22T04:17:57Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Characterization Multimodal Connectivity of Brain Network by Hypergraph
GAN for Alzheimer's Disease Analysis [30.99183477161096]
脳ネットワークを特徴付けるマルチモーダル・ニューロイメージングデータは、現在、アルツハイマー病(AD)解析の高度な技術である。
DTI と rs-fMRI の組合せから脳ネットワークのマルチモーダル接続を生成するための新しいハイパーグラフ生成支援ネットワーク (HGGAN) を提案する。
論文 参考訳(メタデータ) (2021-07-21T09:02:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。