論文の概要: Silver Syntax Pre-training for Cross-Domain Relation Extraction
- arxiv url: http://arxiv.org/abs/2305.11016v1
- Date: Thu, 18 May 2023 14:49:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 14:36:59.978554
- Title: Silver Syntax Pre-training for Cross-Domain Relation Extraction
- Title(参考訳): クロスドメイン関係抽出のためのシルバー構文事前学習
- Authors: Elisa Bassignana, Filip Ginter, Sampo Pyysalo, Rob van der Goot, and
Barbara Plank
- Abstract要約: 関係抽出(RE)は、特に現実的な領域外評価を考える場合、依然として困難な課題である。
高品質な(手動で注釈付けされた)データを取得するのは非常に高価であり、新しいドメインごとに現実的に繰り返すことはできない。
関連するタスクからのデータに対する中間的なトレーニングステップは、多くのNLPタスクで有用であることが示されているが、このセットアップには追加のアノテートデータが必要であるため、しばしば利用できない。
本稿では,REのための中間的事前学習について検討する。構文構造と意味的REとの親和性を利用して,2つのエンティティ間の最も短い依存性パスにあることで,REと密接に関連する構文関係を同定する。
- 参考スコア(独自算出の注目度): 20.603482820770356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relation Extraction (RE) remains a challenging task, especially when
considering realistic out-of-domain evaluations. One of the main reasons for
this is the limited training size of current RE datasets: obtaining
high-quality (manually annotated) data is extremely expensive and cannot
realistically be repeated for each new domain. An intermediate training step on
data from related tasks has shown to be beneficial across many NLP
tasks.However, this setup still requires supplementary annotated data, which is
often not available. In this paper, we investigate intermediate pre-training
specifically for RE. We exploit the affinity between syntactic structure and
semantic RE, and identify the syntactic relations which are closely related to
RE by being on the shortest dependency path between two entities. We then take
advantage of the high accuracy of current syntactic parsers in order to
automatically obtain large amounts of low-cost pre-training data. By
pre-training our RE model on the relevant syntactic relations, we are able to
outperform the baseline in five out of six cross-domain setups, without any
additional annotated data.
- Abstract(参考訳): 特に現実的なドメイン外評価を考える場合、関係抽出(re)は依然として難しい課題である。
高品質な(手動で注釈付けされた)データを取得するのは非常に高価であり、新しいドメイン毎に現実的に繰り返すことができない。
関連するタスクからのデータに対する中間的なトレーニングステップは、多くのNLPタスクで有用であることが示されているが、このセットアップには追加のアノテートデータが必要である。
本稿では,REのための中間訓練について検討する。
構文構造と意味論的REの親和性を利用して,2つのエンティティ間の最も短い依存性経路にあることで,REと密接に関連している構文関係を同定する。
次に,既存の構文解析器の精度を活用して,大量の低コスト事前学習データを自動的に取得する。
関連する構文関係に関するREモデルを事前トレーニングすることで、追加の注釈付きデータなしで、6つのドメイン間設定のうち5つでベースラインを上回ります。
関連論文リスト
- Understanding Synthetic Context Extension via Retrieval Heads [51.8869530817334]
本稿では,検索と推論を必要とする3つの長文タスクに対する合成データの微調整について検討する。
合成データに基づいてトレーニングされたモデルは、実際のデータには及ばないが、驚くべきことに、ミスマッチを解釈できる。
我々の結果は、合成データの微調整性能の解釈方法と、長期にわたる実世界の能力学習のためのより良いデータ作成方法に光を当てた。
論文 参考訳(メタデータ) (2024-10-29T17:55:00Z) - PromptORE -- A Novel Approach Towards Fully Unsupervised Relation
Extraction [0.0]
教師なし関係抽出(RE)は、トレーニング中にラベル付きデータにアクセスすることなく、テキスト内のエンティティ間の関係を識別することを目的としている。
本稿では,'Prompt-based Open Relation extract'モデルであるPromptOREを提案する。
我々は、新しいプロンプトチューニングパラダイムを教師なしの設定に適応させ、関係を表す文を埋め込む。
PromptOREは,B,V,ARIの40%以上の増加率を持つ最先端モデルより一貫して優れていた。
論文 参考訳(メタデータ) (2023-03-24T12:55:35Z) - Continual Contrastive Finetuning Improves Low-Resource Relation
Extraction [34.76128090845668]
関係抽出は低リソースのシナリオやドメインでは特に困難である。
近年の文献は自己教師型学習によって低リソースREに取り組みつつある。
コントラスト学習の一貫した目的を用いたREモデルの事前学習と微調整を提案する。
論文 参考訳(メタデータ) (2022-12-21T07:30:22Z) - Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
本稿では,低リソース環境下での関係抽出システムを構築するための実証的研究について述べる。
低リソース環境での性能を評価するための3つのスキームについて検討する。 (i) ラベル付きラベル付きデータを用いた異なるタイプのプロンプトベース手法、 (ii) 長期分布問題に対処する多様なバランシング手法、 (iii) ラベル付きインドメインデータを生成するためのデータ拡張技術と自己学習。
論文 参考訳(メタデータ) (2022-10-19T15:46:37Z) - Automatically Generating Counterfactuals for Relation Exaction [18.740447044960796]
関係抽出(RE)は自然言語処理の基本課題である。
現在のディープニューラルモデルは高い精度を達成しているが、スプリアス相関の影響を受けやすい。
我々は、エンティティの文脈的反事実を導出するための新しいアプローチを開発する。
論文 参考訳(メタデータ) (2022-02-22T04:46:10Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Relation of the Relations: A New Paradigm of the Relation Extraction
Problem [52.21210549224131]
我々は,関係抽出(RE)の新たなパラダイムを提案し,同じ文脈におけるすべての関係の予測を総合的に検討する。
我々は、手作りのルールを必要としないデータ駆動型アプローチを開発し、グラフニューラルネットワークと関係行列変換器を用いた関係関係(RoR)をそれ自体で学習する。
実験の結果、私たちのモデルはACE05データセットでは+1.12%、SemEval 2018 Task 7.2では2.55%で最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-05T22:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。