論文の概要: Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting
- arxiv url: http://arxiv.org/abs/2501.04815v1
- Date: Wed, 08 Jan 2025 20:11:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:20.936817
- Title: Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting
- Title(参考訳): Dual-Level Representation LearningとAdaptive Promptingを用いた一般化可能な軌道予測に向けて
- Authors: Kaouther Messaoud, Matthieu Cord, Alexandre Alahi,
- Abstract要約: 既存の車両軌道予測モデルは、一般化可能性、予測の不確実性、複雑な相互作用を扱う。
本研究では,(1)自己拡張(SD)とマスドレコンストラクション(MR)による二重レベル表現学習,グローバルコンテキストと細部の詳細の収集,(2)レジスタベースのクエリと事前学習の強化,クラスタリングと抑圧の必要性の排除,(3)微調整中の適応型プロンプトチューニング,メインアーキテクチャの凍結,および少数のプロンプトの最適化といった,新たなトラジェクタ予測フレームワークであるPerceiverを提案する。
- 参考スコア(独自算出の注目度): 107.4034346788744
- License:
- Abstract: Existing vehicle trajectory prediction models struggle with generalizability, prediction uncertainties, and handling complex interactions. It is often due to limitations like complex architectures customized for a specific dataset and inefficient multimodal handling. We propose Perceiver with Register queries (PerReg+), a novel trajectory prediction framework that introduces: (1) Dual-Level Representation Learning via Self-Distillation (SD) and Masked Reconstruction (MR), capturing global context and fine-grained details. Additionally, our approach of reconstructing segmentlevel trajectories and lane segments from masked inputs with query drop, enables effective use of contextual information and improves generalization; (2) Enhanced Multimodality using register-based queries and pretraining, eliminating the need for clustering and suppression; and (3) Adaptive Prompt Tuning during fine-tuning, freezing the main architecture and optimizing a small number of prompts for efficient adaptation. PerReg+ sets a new state-of-the-art performance on nuScenes [1], Argoverse 2 [2], and Waymo Open Motion Dataset (WOMD) [3]. Remarkable, our pretrained model reduces the error by 6.8% on smaller datasets, and multi-dataset training enhances generalization. In cross-domain tests, PerReg+ reduces B-FDE by 11.8% compared to its non-pretrained variant.
- Abstract(参考訳): 既存の車両軌道予測モデルは、一般化可能性、予測の不確実性、複雑な相互作用を扱う。
これは、特定のデータセット用にカスタマイズされた複雑なアーキテクチャや、非効率なマルチモーダルハンドリングのような制限によることが多い。
本研究では,(1)自己拡張(SD)とマスドレコンストラクション(MR)による二重レベル表現学習(Musked Representation Learning, MR)を導入し,グローバルな文脈と細かな詳細を把握した新しいトラジェクトリ予測フレームワークPerReg+を提案する。
さらに,クエリドロップを用いたマスク入力によるセグメントレベルのトラジェクトリとレーンセグメントの再構築,コンテキスト情報の有効活用,一般化の促進,レジスタベースのクエリと事前学習によるマルチモダリティの強化,クラスタリングと抑制の不要化,そして(3)微調整時の適応型プロンプトチューニング,メインアーキテクチャの凍結,および少数のプロンプトの最適化などを行った。
PerReg+は、nuScenes [1], Argoverse 2 [2], Waymo Open Motion Dataset (WOMD) [3]上で、新しい最先端のパフォーマンスを設定する。
注目すべきは、事前訓練されたモデルは、より小さなデータセットでエラーを6.8%削減し、マルチデータセットトレーニングは一般化を促進することである。
クロスドメインテストでは、PerReg+は非制限の変種に比べてB-FDEを11.8%削減する。
関連論文リスト
- Zero-Shot Interactive Text-to-Image Retrieval via Diffusion-Augmented Representations [7.439049772394586]
Diffusion Augmented Retrieval (DAR)はMLLMの微調整を完全に回避したパラダイムシフトフレームワークである。
DARは、Diffusion Model (DM) ベースの視覚合成を用いて、LLM(Large Language Model) 誘導クエリ改善をシナジし、文脈的にリッチな中間表現を生成する。
論文 参考訳(メタデータ) (2025-01-26T03:29:18Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
大規模言語モデル(LLM)は、微調整を必要とせず、強力な少数ショット適応性を示す。
現在のVisual Foundation Models (VFM) は十分なチューニングデータを持つ明示的な微調整を必要とする。
そこで我々は, メタ学習目的の多様なLoRAからメタLoRAを蒸留するフレームワークであるLoRA Recycleを提案する。
論文 参考訳(メタデータ) (2024-12-03T07:25:30Z) - Exact, Tractable Gauss-Newton Optimization in Deep Reversible Architectures Reveal Poor Generalization [52.16435732772263]
多くのアプリケーションにおいて、ディープニューラルネットワークのトレーニングを加速する2階最適化が示されている。
しかし、二階法の一般化特性についてはいまだ議論が続いている。
我々は、Gauss-Newton (GN) の正確な更新が、ディープアーキテクチャのクラスにおいて、牽引可能な形式を取ることを初めて示す。
論文 参考訳(メタデータ) (2024-11-12T17:58:40Z) - HG-Adapter: Improving Pre-Trained Heterogeneous Graph Neural Networks with Dual Adapters [53.97380482341493]
事前学習, 即時学習」は, 事前学習したヘテロジニアスグラフニューラルネットワーク(HGNN)のチューニング性能を示す。
本稿では、2つの新しいアダプタと潜在的ラベル付きデータ拡張を組み合わせた統合フレームワークを提案し、事前学習されたHGNNモデルの一般化を改善する。
論文 参考訳(メタデータ) (2024-11-02T06:43:54Z) - Split-Boost Neural Networks [1.1549572298362787]
本稿では,スプリットブートと呼ばれるフィードフォワードアーキテクチャの革新的なトレーニング戦略を提案する。
このような新しいアプローチは、最終的に正規化項を明示的にモデル化することを避けることができる。
提案した戦略は、ベンチマーク医療保険設計問題内の実世界の(匿名化された)データセットでテストされる。
論文 参考訳(メタデータ) (2023-09-06T17:08:57Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
本稿では,多分野分類データに特徴的破損と回復を適用したMAP(Model-Agnostic Pretraining)フレームワークを提案する。
マスク付き特徴予測(RFD)と代替特徴検出(RFD)の2つの実用的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-08-03T12:55:55Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - Understanding Dynamics of Nonlinear Representation Learning and Its
Application [12.697842097171119]
暗黙的非線形表現学習のダイナミクスについて検討する。
我々は,データ構造アライメント条件がグローバル収束に十分であることを示す。
我々はデータ構造アライメント条件を満たす新しいトレーニングフレームワークを作成した。
論文 参考訳(メタデータ) (2021-06-28T16:31:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。