論文の概要: Enriching language models with graph-based context information to better
understand textual data
- arxiv url: http://arxiv.org/abs/2305.11070v1
- Date: Wed, 10 May 2023 10:57:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-21 10:26:57.509045
- Title: Enriching language models with graph-based context information to better
understand textual data
- Title(参考訳): テキストデータの理解を深めるグラフベースの文脈情報を用いた言語モデルの構築
- Authors: Albert Roethel, Maria Ganzha, Anna Wr\'oblewska
- Abstract要約: BERTモデルへのグラフベースの文脈化が,分類タスクの例において,その性能を向上させることを実験的に実証した。
具体的には、Pubmedデータセット上で、エラーを8.51%から7.96%に削減し、パラメータの数を1.6%増加させた。
- 参考スコア(独自算出の注目度): 0.15469452301122172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A considerable number of texts encountered daily are somehow connected with
each other. For example, Wikipedia articles refer to other articles via
hyperlinks, scientific papers relate to others via citations or (co)authors,
while tweets relate via users that follow each other or reshare content. Hence,
a graph-like structure can represent existing connections and be seen as
capturing the "context" of the texts. The question thus arises if extracting
and integrating such context information into a language model might help
facilitate a better automated understanding of the text. In this study, we
experimentally demonstrate that incorporating graph-based contextualization
into BERT model enhances its performance on an example of a classification
task. Specifically, on Pubmed dataset, we observed a reduction in error from
8.51% to 7.96%, while increasing the number of parameters just by 1.6%.
Our source code: https://github.com/tryptofanik/gc-bert
- Abstract(参考訳): 毎日かなりの数のテキストが何らかの形で相互に関連している。
例えば、ウィキペディアの記事はハイパーリンクを介して他の記事を参照し、科学論文は引用や(共)著者を介して他の記事に関連する。
したがって、グラフのような構造は既存の接続を表現でき、テキストの"コンテキスト"をキャプチャすると見なすことができる。
したがって、そのようなコンテキスト情報を言語モデルに抽出して統合することで、テキストの自動理解がより容易になるかどうかが問題となる。
本研究では,グラフに基づくコンテキスト化をbertモデルに組み込むことで,分類タスクの例においてその性能が向上することを示す。
具体的には、pubmedデータセットではエラーが8.51%から7.96%に減少し、パラメータ数は1.6%増加した。
ソースコード: https://github.com/tryptofanik/gc-bert
関連論文リスト
- Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-Decomposition) は、生のテキスト属性を分析してグラフ構造を分解する新しいフレームワークである。
我々のフレームワークは、さまざまなデータセットのノード分類性能を大幅に向上させ、ウィスコンシンデータセットでは最大16%の改善を実現した。
論文 参考訳(メタデータ) (2024-05-28T20:54:47Z) - Relation Rectification in Diffusion Model [64.84686527988809]
本稿では,最初に生成できない関係を正確に表現するためにモデルを洗練することを目的とした,リレーション・リクティフィケーション(Relation Rectification)と呼ばれる新しいタスクを紹介する。
異種グラフ畳み込みネットワーク(HGCN)を利用した革新的な解を提案する。
軽量HGCNは、テキストエンコーダによって生成されたテキスト埋め込みを調整し、埋め込み空間におけるテキスト関係の正確な反映を保証する。
論文 参考訳(メタデータ) (2024-03-29T15:54:36Z) - Hierarchical Knowledge Distillation on Text Graph for Data-limited
Attribute Inference [5.618638372635474]
我々は,ソーシャルメディアのテキストデータに基づく属性推論のためのテキストグラフに基づく少ショット学習モデルを開発した。
我々のモデルはまず、多様体学習とメッセージパッシングを用いてテキストグラフを構築し、洗練する。
クロスドメインテキストと未ラベルテキストをさらに活用して、少数ショットのパフォーマンスを向上させるために、テキストグラフ上で階層的な知識蒸留が考案される。
論文 参考訳(メタデータ) (2024-01-10T05:50:34Z) - Pretraining Language Models with Text-Attributed Heterogeneous Graphs [28.579509154284448]
テキスト分散不均質グラフ(TAHG)におけるトポロジ的および異種情報を明確に考察する言語モデル(LM)のための新しい事前学習フレームワークを提案する。
本稿では、LMと補助異種グラフニューラルネットワークを協調最適化することにより、コンテキストグラフに関わるノードを予測するトポロジ対応事前学習タスクを提案する。
各種ドメインの3つのデータセット上でリンク予測とノード分類を行う。
論文 参考訳(メタデータ) (2023-10-19T08:41:21Z) - Learning Multiplex Representations on Text-Attributed Graphs with One Language Model Encoder [55.24276913049635]
テキスト分散グラフ上での多重表現学習のための新しいフレームワークMETAGを提案する。
既存の手法とは対照的に、MeTAGは1つのテキストエンコーダを使用して関係性間の共有知識をモデル化する。
学術分野と電子商取引分野の5つのグラフにおいて,9つの下流タスクについて実験を行った。
論文 参考訳(メタデータ) (2023-10-10T14:59:22Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
テキスト分散グラフ(TAG)におけるテキストとノードの分離表現を共同学習するためのContrastive Graph-Text Pretraining(ConGraT)を提案する。
提案手法は言語モデル(LM)とグラフニューラルネットワーク(GNN)を訓練し,CLIPにインスパイアされたバッチワイドコントラスト学習目標を用いて,それらの表現を共通の潜在空間に整列させる。
実験により、ConGraTは、ノードとテキストのカテゴリ分類、リンク予測、言語モデリングなど、さまざまな下流タスクのベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-23T17:53:30Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
汎用知識グラフ(KG)を用いた会話意味解析の課題を,数百万のエンティティと数千のリレーショナルタイプで検討する。
ユーザ発話を実行可能な論理形式にインタラクティブにマッピングできるモデルに焦点を当てる。
論文 参考訳(メタデータ) (2023-05-04T16:04:41Z) - Relation Clustering in Narrative Knowledge Graphs [71.98234178455398]
原文内の関係文は(SBERTと)埋め込み、意味論的に類似した関係をまとめるためにクラスタ化される。
予備的なテストでは、そのようなクラスタリングが類似した関係を検知し、半教師付きアプローチのための貴重な前処理を提供することが示されている。
論文 参考訳(メタデータ) (2020-11-27T10:43:04Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
本稿では,BERTSumモデルの最初の対話型言語への応用について述べる。
我々は多種多様な話題にまたがるナレーションビデオの抽象要約を生成する。
我々は、これをインテリジェントな仮想アシスタントの機能として統合し、要求に応じて文字と音声の両方の指導内容の要約を可能にすることを想定する。
論文 参考訳(メタデータ) (2020-08-21T20:59:34Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
本稿では,新しいコンテキスト認識グラフ(CAG)ニューラルネットワークを提案する。
グラフの各ノードは、オブジェクトベース(視覚)と履歴関連(テキスト)コンテキスト表現の両方を含む、共同意味機能に対応している。
論文 参考訳(メタデータ) (2020-04-05T13:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。