論文の概要: ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings
- arxiv url: http://arxiv.org/abs/2305.14321v2
- Date: Tue, 9 Jul 2024 23:44:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 22:29:23.699741
- Title: ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings
- Title(参考訳): ConGraT: 共同グラフとテキスト埋め込みのための自己監督型コントラスト事前学習
- Authors: William Brannon, Wonjune Kang, Suyash Fulay, Hang Jiang, Brandon Roy, Deb Roy, Jad Kabbara,
- Abstract要約: テキスト分散グラフ(TAG)におけるテキストとノードの分離表現を共同学習するためのContrastive Graph-Text Pretraining(ConGraT)を提案する。
提案手法は言語モデル(LM)とグラフニューラルネットワーク(GNN)を訓練し,CLIPにインスパイアされたバッチワイドコントラスト学習目標を用いて,それらの表現を共通の潜在空間に整列させる。
実験により、ConGraTは、ノードとテキストのカテゴリ分類、リンク予測、言語モデリングなど、さまざまな下流タスクのベースラインよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 20.25180279903009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning on text-attributed graphs (TAGs), in which nodes are associated with one or more texts, has been the subject of much recent work. However, most approaches tend to make strong assumptions about the downstream task of interest, are reliant on hand-labeled data, or fail to equally balance the importance of both text and graph representations. In this work, we propose Contrastive Graph-Text pretraining (ConGraT), a general, self-supervised approach for jointly learning separate representations of texts and nodes in a TAG. Our method trains a language model (LM) and a graph neural network (GNN) to align their representations in a common latent space using a batch-wise contrastive learning objective inspired by CLIP. We further propose an extension to the CLIP objective that leverages graph structure to incorporate information about inter-node similarity. Extensive experiments demonstrate that ConGraT outperforms baselines on various downstream tasks, including node and text category classification, link prediction, and language modeling. Finally, we present an application of our method to community detection in social graphs, which enables finding more textually grounded communities, rather than purely graph-based ones. Code and certain datasets are available at https://github.com/wwbrannon/congrat.
- Abstract(参考訳): ノードが1つ以上のテキストに関連付けられているテキスト分散グラフ(TAG)での学習は、非常に最近の研究の対象となっている。
しかし、ほとんどのアプローチは、関心の下流のタスクについて強い仮定をし、手書きのデータに依存しているか、テキストとグラフの表現の重要性を等しくバランスが取れない傾向にある。
本研究では,TAGにおけるテキストとノードの分離表現を共同で学習するための汎用的自己教師型アプローチであるContrastive Graph-Text Pretraining(ConGraT)を提案する。
提案手法は言語モデル(LM)とグラフニューラルネットワーク(GNN)を訓練し,CLIPにインスパイアされたバッチワイドコントラスト学習目標を用いて,それらの表現を共通の潜在空間に整列させる。
さらに,ノード間の類似性に関する情報を取り込むためにグラフ構造を利用するCLIPの目的の拡張を提案する。
大規模な実験により、ConGraTは、ノードとテキストのカテゴリ分類、リンク予測、言語モデリングなど、さまざまな下流タスクのベースラインを上回ります。
最後に,本手法のソーシャルグラフにおけるコミュニティ検出への応用について述べる。
コードと特定のデータセットはhttps://github.com/wwbrannon/congrat.comで入手できる。
関連論文リスト
- Pre-Training and Prompting for Few-Shot Node Classification on Text-Attributed Graphs [35.44563283531432]
テキスト分散グラフ(英: Text-attributed graph、TAG)は、生のテキストに関連付けられた各ノードを持つ、現実世界の重要なグラフ構造化データの一種である。
TAGでは、従来の数発のノード分類手法が、事前処理されたノード機能で直接トレーニングを行う。
P2TAGは、グラフ事前学習とプロンプトを備えたTAG上の少数ショットノード分類のためのフレームワークである。
論文 参考訳(メタデータ) (2024-07-22T07:24:21Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
現実のテキストグラフを対象とするフレキシブルな問合せフレームワークを開発した。
一般のテキストグラフに対する最初の検索拡張生成(RAG)手法を提案する。
G-Retrieverは、このタスクをSteiner Tree最適化問題として定式化し、グラフ上でRAGを実行する。
論文 参考訳(メタデータ) (2024-02-12T13:13:04Z) - GRENADE: Graph-Centric Language Model for Self-Supervised Representation
Learning on Text-Attributed Graphs [22.282756544376493]
テキスト分散グラフ上での自己教師型表現学習の問題を解決するために,新しいグラフ中心言語モデルGRENADEを開発した。
GRENADEは、事前訓練された言語モデルとグラフニューラルネットワークの両方の相乗効果を利用して、2つの専門的な自己教師付き学習アルゴリズムを最適化する。
提案したグラフ中心の自己教師型学習アルゴリズムは、GRENADEが情報的テキスト意味論だけでなく、テキスト対応グラフの構造的コンテキスト情報を取得するのに有効である。
論文 参考訳(メタデータ) (2023-10-23T17:18:35Z) - Pretraining Language Models with Text-Attributed Heterogeneous Graphs [28.579509154284448]
テキスト分散不均質グラフ(TAHG)におけるトポロジ的および異種情報を明確に考察する言語モデル(LM)のための新しい事前学習フレームワークを提案する。
本稿では、LMと補助異種グラフニューラルネットワークを協調最適化することにより、コンテキストグラフに関わるノードを予測するトポロジ対応事前学習タスクを提案する。
各種ドメインの3つのデータセット上でリンク予測とノード分類を行う。
論文 参考訳(メタデータ) (2023-10-19T08:41:21Z) - Learning Multiplex Representations on Text-Attributed Graphs with One Language Model Encoder [55.24276913049635]
テキスト分散グラフ上での多重表現学習のための新しいフレームワークMETAGを提案する。
既存の手法とは対照的に、MeTAGは1つのテキストエンコーダを使用して関係性間の共有知識をモデル化する。
学術分野と電子商取引分野の5つのグラフにおいて,9つの下流タスクについて実験を行った。
論文 参考訳(メタデータ) (2023-10-10T14:59:22Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Enhancing Dialogue Generation via Dynamic Graph Knowledge Aggregation [23.54754465832362]
従来のグラフニューラルネットワーク(GNN)では、グラフに渡すメッセージはテキストとは独立している。
このトレーニング体制は、グラフ知識とテキストの間に意味的なギャップをもたらす。
知識グラフ強化対話生成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T13:21:00Z) - Improving Graph-Based Text Representations with Character and Word Level
N-grams [30.699644290131044]
単語と文字n-gramノードを文書ノードと組み合わせた新しい単語文字テキストグラフを提案する。
また、提案したテキストグラフをモデル化するための2つの新しいグラフベースニューラルモデルWCTextGCNとWCTextGATを提案する。
論文 参考訳(メタデータ) (2022-10-12T08:07:54Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
短文分類のためのグラフニューラルネットワーク(GNN)に基づく ShiNE と呼ばれる新しい手法を提案する。
まず,短文データセットを単語レベル成分グラフからなる階層的不均一グラフとしてモデル化する。
そして、類似した短いテキスト間の効果的なラベル伝搬を容易にするショート文書グラフを動的に学習する。
論文 参考訳(メタデータ) (2021-10-30T05:33:05Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
本稿では,新しいコンテキスト認識グラフ(CAG)ニューラルネットワークを提案する。
グラフの各ノードは、オブジェクトベース(視覚)と履歴関連(テキスト)コンテキスト表現の両方を含む、共同意味機能に対応している。
論文 参考訳(メタデータ) (2020-04-05T13:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。