mLongT5: A Multilingual and Efficient Text-To-Text Transformer for
Longer Sequences
- URL: http://arxiv.org/abs/2305.11129v2
- Date: Thu, 26 Oct 2023 22:43:26 GMT
- Title: mLongT5: A Multilingual and Efficient Text-To-Text Transformer for
Longer Sequences
- Authors: David Uthus, Santiago Onta\~n\'on, Joshua Ainslie, Mandy Guo
- Abstract summary: This model builds upon the architecture of LongT5, while leveraging the multilingual datasets used for pretraining mT5 and the pretraining tasks of UL2.
We evaluate this model on a variety of multilingual summarization and question-answering tasks, and the results show stronger performance for mLongT5 when compared to existing multilingual models such as mBART or M-BERT.
- Score: 17.461172187276734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present our work on developing a multilingual, efficient text-to-text
transformer that is suitable for handling long inputs. This model, called
mLongT5, builds upon the architecture of LongT5, while leveraging the
multilingual datasets used for pretraining mT5 and the pretraining tasks of
UL2. We evaluate this model on a variety of multilingual summarization and
question-answering tasks, and the results show stronger performance for mLongT5
when compared to existing multilingual models such as mBART or M-BERT.
Related papers
- EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models [50.459861376459656]
EMMA-500 is a large-scale multilingual language model continue-trained on texts across 546 languages.
Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity.
arXiv Detail & Related papers (2024-09-26T14:40:45Z) - A Text-to-Text Model for Multilingual Offensive Language Identification [19.23565690468299]
This study presents the first pre-trained model with encoder-decoder architecture for offensive language identification with text-to-text transformers (T5)
Our pre-trained T5 model outperforms other transformer-based models fine-tuned for offensive language detection, such as fBERT and HateBERT, in multiple English benchmarks.
Following a similar approach, we also train the first multilingual pre-trained model for offensive language identification using mT5.
arXiv Detail & Related papers (2023-12-06T09:37:27Z) - BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models [141.21603469555225]
Large language models (LLMs) have achieved dramatic proficiency over NLP tasks with normal length.
We propose BAMBOO, a multi-task long context benchmark.
It consists of 10 datasets from 5 different long text understanding tasks.
arXiv Detail & Related papers (2023-09-23T11:36:15Z) - mmT5: Modular Multilingual Pre-Training Solves Source Language
Hallucinations [54.42422445568523]
mmT5 is a modular multilingual sequence-to-sequence model.
It disentangles language-specific information from language-agnostic information.
Compared to mT5, mmT5 raises the rate of generating text in the correct language under zero-shot settings from 7% to 99%.
arXiv Detail & Related papers (2023-05-23T16:38:01Z) - Multilingual Multimodal Learning with Machine Translated Text [27.7207234512674]
We investigate whether machine translating English multimodal data can be an effective proxy for the lack of readily available multilingual data.
We propose two metrics for automatically removing such translations from the resulting datasets.
In experiments on five tasks across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning.
arXiv Detail & Related papers (2022-10-24T11:41:20Z) - nmT5 -- Is parallel data still relevant for pre-training massively
multilingual language models? [9.560948239388662]
We investigate the impact of incorporating parallel data into mT5 pre-training.
We find that multi-tasking language modeling with objectives such as machine translation is a straightforward way to improve performance.
arXiv Detail & Related papers (2021-06-03T23:12:27Z) - mT6: Multilingual Pretrained Text-to-Text Transformer with Translation
Pairs [51.67970832510462]
We improve multilingual text-to-text transfer Transformer with translation pairs (mT6)
We explore three cross-lingual text-to-text pre-training tasks, namely, machine translation, translation pair span corruption, and translation span corruption.
Experimental results show that the proposed mT6 improves cross-lingual transferability over mT5.
arXiv Detail & Related papers (2021-04-18T03:24:07Z) - mT5: A massively multilingual pre-trained text-to-text transformer [60.0210636815514]
"Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on English-language NLP tasks.
We introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages.
arXiv Detail & Related papers (2020-10-22T17:58:14Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
We propose a data augmentation framework to generate multi-lingual code-switching data to fine-tune mBERT.
Compared with the existing work, our method does not rely on bilingual sentences for training, and requires only one training process for multiple target languages.
arXiv Detail & Related papers (2020-06-11T13:15:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.