Simulating Gaussian Boson Sampling with Tensor Networks in the
Heisenberg picture
- URL: http://arxiv.org/abs/2305.11215v3
- Date: Mon, 26 Feb 2024 18:00:01 GMT
- Title: Simulating Gaussian Boson Sampling with Tensor Networks in the
Heisenberg picture
- Authors: Dario Cilluffo, Nicola Lorenzoni, Martin B. Plenio
- Abstract summary: We introduce a novel method for computing the probability distribution of boson sampling based on the time evolution of tensor networks in the Heisenberg picture.
Our results demonstrate the effectiveness of the method and its potential to advance quantum computing research.
- Score: 0.9208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the Schr{\"o}dinger and Heisenberg pictures are equivalent
formulations of quantum mechanics, simulations performed choosing one over the
other can greatly impact the computational resources required to solve a
problem. Here we demonstrate that in Gaussian boson sampling, a central problem
in quantum computing, a good choice of representation can shift the boundary
between feasible and infeasible numerical simulability. To achieve this, we
introduce a novel method for computing the probability distribution of boson
sampling based on the time evolution of tensor networks in the Heisenberg
picture. In addition, we overcome limitations of existing methods enabling
simulations of realistic setups affected by non-uniform photon losses. Our
results demonstrate the effectiveness of the method and its potential to
advance quantum computing research.
Related papers
- Variational Tensor Network Simulation of Gaussian Boson Sampling and Beyond [0.0]
We propose a classical simulation tool for general continuous variable sampling problems.
We reformulate the sampling problem as that of finding the ground state of a simple few-body Hamiltonian.
We validate our method by simulating Gaussian Boson Sampling, where we achieve results comparable to the state of the art.
arXiv Detail & Related papers (2024-10-24T13:43:06Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Testing of on-cloud Gaussian Boson Sampler "Borealis'' via graph theory [0.0]
photonic-based sampling machines solving the Gaussian Boson Sampling problem play a central role in the experimental demonstration of a quantum computational advantage.
In this work, we test the performances of the recently developed photonic machine Borealis as a sampling machine and its possible use cases in graph theory.
arXiv Detail & Related papers (2023-06-21T09:02:55Z) - Simulating lossy Gaussian boson sampling with matrix product operators [7.33258560389563]
We show that efficient tensor network simulations are likely possible under the $N_textoutproptosqrtN$ scaling of the number of surviving photons.
We overcome previous challenges due to the large local space dimensions in Gaussian boson sampling with hardware acceleration.
arXiv Detail & Related papers (2023-01-30T12:10:39Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Non-linear Boson Sampling [0.0]
We introduce the adoption of non-linear photon-photon interactions in the Boson Sampling framework.
By extending the computational expressivity of Boson Sampling, the introduction of non-linearities promises to disclose novel functionalities.
arXiv Detail & Related papers (2021-10-26T15:41:51Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Boson Sampling with Gaussian input states: efficient scaling and
certification [0.0]
intermediate models of quantum computation could challenge the Extended Church-ing.
One of these models based on single photons interacting via linear optics is called Boson Sampling.
We propose the combination of switchable dual-homodyne and single-photon detections, the temporal loop technique and scattershot-based Boson Sampling.
arXiv Detail & Related papers (2018-12-21T07:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.